分析 (Ⅰ)通過將θ1=62,θ0=15,t=1,θ=52代入公式θ=θ+(θ-θ)e-kt計算可知k的值;
(Ⅱ)通過(I)可知公式θ=15+47e-0.24t,令θ=32計算即得結(jié)論.
解答 解:(Ⅰ)由題意可知,θ1=62,θ0=15,當t=1時,θ=52,
于是52=15+(62-15)e-k,
化簡得:k=-ln$\frac{37}{47}$,
∵ln$\frac{37}{47}$≈-0.24,
∴k=0.24;
(Ⅱ)由(I)可知θ=15+47e-0.24t,
∴當θ=32時,32=15+47e-0.24t,
解得:t=4.2.
點評 本題考查函數(shù)模型的選擇與應用,考查運算求解能力,注意解題方法的積累,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 12 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1 | C. | $\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{8}$=1 | D. | $\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{8}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com