13.橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1的焦點(diǎn)在y軸上,則一定有( 。
A.m>n>0B.n>m>0C.0>m>nD.0>n>m

分析 直接利用橢圓的簡(jiǎn)單性質(zhì)求解即可.

解答 解:橢圓$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1的焦點(diǎn)在y軸上,
則一定有:n>m>0.
故選:B.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.(學(xué)法反思總結(jié)題)
結(jié)合平時(shí)學(xué)習(xí)體會(huì),請(qǐng)回答以下問題:
(1)你認(rèn)為求二面角常用的方法有哪些?請(qǐng)按應(yīng)用的重要程度寫出3種,并就其中一種方法談?wù)勊膽?yīng)用條件;
(2)在解決數(shù)學(xué)題目時(shí)會(huì)經(jīng)常遇到陌生難題,對(duì)這些陌生難題的解決往往不知所措,實(shí)際上對(duì)這些陌生難題的解決方法往往都是通過分析將其轉(zhuǎn)化成為若干常見的基本問題加以解決,也就是我們教師常說的:所謂的難題都是由若干基本題拼湊而成的.請(qǐng)你結(jié)合對(duì)立體幾何問題的解決體會(huì),談?wù)剬?duì)于一個(gè)陌生的立體幾何難題經(jīng)常采取哪些策略方法可將其轉(zhuǎn)化為若干常見問題的,要求寫出3種策略.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在某年級(jí)的聯(lián)歡會(huì)上設(shè)計(jì)了一個(gè)摸獎(jiǎng)的游戲,在一個(gè)口袋中裝有10個(gè)紅球和20個(gè)白球,這些球除顏色外完全相同,一次從中摸出5個(gè)球,至少3個(gè)紅球就中獎(jiǎng),則中獎(jiǎng)概率為0.19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)點(diǎn)P在雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$上.若F1、F2為雙曲線的兩個(gè)焦點(diǎn),且PF1:PF2=1:3,則△F1PF2的周長(zhǎng)為22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知橢圓C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{_{1}}^{2}}$=1(a1>b1>0)與雙曲線C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$-$\frac{{y}^{2}}{{_{2}}^{2}}$=1(a2>0,b2>0)有相同的焦點(diǎn)F1,F(xiàn)2,設(shè)橢圓的離心率為e1,雙曲線的離心率為e2,O為坐標(biāo)原點(diǎn),P是兩曲線的公共點(diǎn),且∠F1PF2=60°,則$\frac{{e}_{1}{e}_{2}}{\sqrt{3{{e}_{1}}^{2}+{{e}_{2}}^{2}}}$的值為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知圓C的方程為x2+y2-10x=0,求與y軸相切且與圓C外切的動(dòng)圓圓心P軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)A={x|-3≤x≤a},B={y|y=3x+10,x∈A},C={z|z=5-x},x∈A},且B∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知PA⊥面ABCD,PA=AB=3,面ABCD為正方形.試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,分別求下列平面的法向量.
(1)面ABCD;
(2)面PAB;
(3)面PBC;
(4)面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若關(guān)于x的不等式|x-1|+2|x+2|≤a在[-4,4]上有解,則實(shí)數(shù)a的取值范圍是[3,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案