17.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n,則$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{n}{n+1}$.

分析 利用遞推關(guān)系與“裂項(xiàng)求和”即可得出.

解答 解:∵Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n,∴當(dāng)n=1時(shí),a1=S1=1;當(dāng)n≥2時(shí),an=Sn-Sn-1=$\frac{1}{2}$n2+$\frac{1}{2}$n-$[\frac{1}{2}(n-1)^{2}+\frac{1}{2}(n-1)]$,化為an=n.
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
則$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
故答案為:$\frac{n}{n+1}$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系與“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓錐的底面半徑為3,母線長(zhǎng)為5,在圓錐內(nèi)部放置一個(gè)內(nèi)接圓柱(圓柱的一底面與圓錐的底面重合),
(Ⅰ)求圓柱的體積V與其底面半徑r的函數(shù)關(guān)系式;
(Ⅱ)求圓柱的體積V最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.“對(duì)任意的實(shí)數(shù)x,ax+b=0”是“a=0且b=0”的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.有以下四個(gè)結(jié)論;①$(-\frac{2}{3})^{\frac{2}{3}}$<$(\frac{1}{2})^{\frac{1}{3}}$;②若冪函數(shù)f(x)的圖象經(jīng)過(guò)點(diǎn)(2,$\sqrt{2}$),則f(x)為偶函數(shù);③函數(shù)y=log2(x2-4x+3)的單調(diào)增區(qū)間為(2,+∞);④函數(shù)y=0.5|x|的值域?yàn)椋?,1].其中正確結(jié)論的序號(hào)是①④(把所有正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知在△ABC中,D,E分別為AC,AB的中點(diǎn),沿DE將△ADE折起,使A到A′的位置,若M是A′B的中點(diǎn),求證:ME∥平面A′CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.定義在R的奇函數(shù)f(x),當(dāng)x∈(-∞,0)時(shí),f(x)+xf′(x)<0恒成立,若a=(log3π)•f(log3π),b=(logπ3)•f(logπ3),c=(-lnπ)•f(-lnπ),則( 。
A.c>a>bB.c>b>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,ABCD是邊長(zhǎng)為2的正方形,ED=1,DE⊥平面ABCD,EF∥BD,且EF=$\frac{1}{2}$BD.
(1)求證:BF∥平面ACE;
(2)求證平面ACE⊥平面BDEF;
(3)求直線AD與平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0)上有一動(dòng)點(diǎn)M,經(jīng)過(guò)左焦點(diǎn)F且平行于OM的直線交橢圓C于A,B兩點(diǎn)(O為坐標(biāo)原點(diǎn)).(1)若△OAM的面積最大值為1,求a的值;
(2)證明:|FA|•|FB|=$\frac{|OM{|}^{2}}{{a}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.求下列函數(shù)的定義域:
(1)y=$\frac{\root{3}{{x}^{2}-1}}{x-6}$.   
(2)y=(x-3)0+$\sqrt{1+x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案