分析 (1)由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,從而得到函數(shù)的解析式.
(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換,可求得y=f2(x)=f1(x-$\frac{π}{4}$)=2sin(2x-$\frac{π}{6}$),從而可求y=f2(x)的最大值及取最大值時的自變量的值.
解答 解:(1)由函數(shù)的圖象可得,A=2,由 $\frac{1}{2}•\frac{2π}{ω}$=$\frac{π}{3}-(-\frac{π}{6})$,解得ω=2.
再由點($\frac{π}{3}$,0)在函數(shù)圖象上,可得 2×$\frac{π}{3}$+φ=kπ,k∈Z,解得φ=kπ-$\frac{2π}{3}$,k∈Z,
又|φ|<$\frac{π}{2}$,可得:φ=$\frac{π}{3}$.
故函數(shù)的解析式為f1(x)=2sin(2x+$\frac{π}{3}$).
(2)將函數(shù)y=f1(x)的圖象向右平移$\frac{π}{4}$個單位長度,
得到函數(shù)圖y=f2(x)=2sin[2(x-$\frac{π}{4}$)+$\frac{π}{3}$]=2sin(2x-$\frac{π}{6}$).
y=f2(x)的最大值為2,此時2x-$\frac{π}{6}$=2kπ+$\frac{π}{2}$,k∈Z,解得:x=kπ+$\frac{π}{3}$,k∈Z.
點評 本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,考查函數(shù)y=Asin(ωx+φ)的圖象變換,考查正弦函數(shù)的最值,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com