2.已知集合P={x|x2-2x-3≥0},Q={x|1<x<4},則∁R(P∩Q)等于(  )
A.(-1,3)B.(3,4]C.(-∞,3)∪[4,+∞)D.(-∞,-1)∪(3,+∞)

分析 求出集合P,然后求解∁R(P∩Q).

解答 解:集合P={x|x2-2x-3≥0}={x|x≤-1或x≥3},Q={x|1<x<4},則P∩Q={x|3≤x<4}.
R(P∩Q)=(-∞,3)∪[4,+∞).
故選:C.

點(diǎn)評(píng) 本題考查集合的基本運(yùn)算,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某中學(xué)為調(diào)查在校學(xué)生的視力情況,擬采用分層抽樣的方法,從該校三個(gè)年級(jí)中抽取一個(gè)容量為30的樣本進(jìn)行調(diào)查,已知該校高一、高二、高三年級(jí)的學(xué)生人數(shù)之比為4:5:6,則應(yīng)從高一年級(jí)學(xué)生中抽取8名學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1(a>0)的右焦點(diǎn)為F,過點(diǎn)F作一條漸近線的垂線,垂足為P.若點(diǎn)P的縱坐標(biāo)為$\frac{2\sqrt{5}}{5}$,則該雙曲線的離心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若復(fù)數(shù)$\frac{2-bi}{1+2i}$(b∈R,i為虛數(shù)單位)的實(shí)部和虛部互為相反數(shù),則實(shí)數(shù)b為( 。
A.-2B.2C.$\frac{2}{3}$D.$-\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓C1:x2+y2+6x=0關(guān)于直線l1:y=2x+1對(duì)稱的圓為C,則圓C的方程為(  )
A.(x+1)2+(y+2)2=9B.(x+1)2+(y-2)2=9C.(x-1)2+(y-2)2=9D.(x-1)2+(y+2)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序框圖,則輸出S的值為(  )
A.1500B.1800C.2000D.2500

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$的部分圖象如圖所示,則以下關(guān)于f(x)圖象的描述正確的是( 。
A.在(-$\frac{π}{12}$,$\frac{π}{6}$)單調(diào)遞增B.在(-$\frac{5π}{6}$,-$\frac{7π}{12}$)單調(diào)遞減
C.x=-$\frac{5π}{6}$是其一條對(duì)稱軸D.(-$\frac{π}{12}$,0)是其一個(gè)對(duì)稱中心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.過點(diǎn)P(-1,0)作曲線y=ex的切線l.
(Ⅰ)求l的方程;
(Ⅱ)若A(x1,$\frac{a}{{{e^{x_1}}}}$),B(x2,$\frac{a}{{{e^{x_2}}}}$)是直線l上的兩個(gè)不同點(diǎn),求證:x1+x2<-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.三棱臺(tái)ABC-A1B1C1中,AB:A1B1=1:3,則三棱錐A1-ABC與B-A1B1C的體積比為( 。
A.$1:\sqrt{3}$B.1:3C.$1:3\sqrt{3}$D.1:9

查看答案和解析>>

同步練習(xí)冊(cè)答案