12.已知α+β=$\frac{π}{4}$,且tanα=2,則tanβ的值是-$\frac{1}{3}$.

分析 利用兩角差的正切公式求得tanβ=tan[(α+β)-α]的值.

解答 解:∵α+β=$\frac{π}{4}$,
∴tan(α+β)=1,
又∵tanα=2,
則tanβ=tan[(α+β)-α]=$\frac{tan(α+β)-tanα}{1+tan(α+β)tanα}$=$\frac{1-2}{1=2}$=-$\frac{1}{3}$,
故答案為:$-\frac{1}{3}$.

點評 本題主要考查兩角和差的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某三棱錐的正視圖和側(cè)視圖如圖所示,則該三棱錐的俯視圖的面積為( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.不等式$\frac{1}{x-1}$≤1的解集為( 。
A.{x|x<1}B.{x|x≥2}C.{x|x<1或x>2}D.{x|x<1或x≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在空間直角坐標(biāo)系中,A(1,1,-2),B(1,2,-3),C(-1,3,0),D(x,y,z)(x,y,z∈R),若四點A,B,C,D共面,則( 。
A.2x+y+z=1B.x+y+z=0C.x-y+z=-4D.x+y-z=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求圖中a、b的值及函數(shù)f(x)的遞減區(qū)間;
(3)若將f(x)的圖象向左平移m(m>0)個單位后,得到g(x)的圖象關(guān)于直線x=$\frac{π}{3}$對稱,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x∈(0,2)時,f(x)=lnx+x2+1,則當(dāng)x∈(-2,0)時,函數(shù)f(x)的表達式為f(x)=-ln(-x)-x2 -1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在某次比賽中,將甲乙兩名選手的得分情況制成如圖所示的莖葉圖,記甲乙兩人所得分數(shù)的平均分分別為$\overline{{x}_{甲}}$和$\overline{{x}_{乙}}$,則下列判斷正確的是( 。
A.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,甲比乙成績穩(wěn)定B.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,甲比乙成績穩(wěn)定
C.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,乙比甲成績穩(wěn)定D.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,乙比甲成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=cos2x的最小正周期為( 。
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)集合{x|x2≥b}=R,則b的取值范圍是{b|b≤0}.

查看答案和解析>>

同步練習(xí)冊答案