分析 函數(shù)ex,lnx在(0,+∞)上都為增函數(shù),從而得到f(x)在(0,+∞)上為增函數(shù),從而由f(x)為偶函數(shù)及f(a)<f(a-1)得到f(|a|)<f(|a-1|),從而得到|a|<|a-1|,解該不等式即得a的取值范圍.
解答 解:x>0時(shí),f(x)=ex+lnx,ex,lnx在(0,+∞)上都是增函數(shù);
∴f(x)在(0,+∞)上單調(diào)遞增;
由已知條件知f(|a|)<f(|a-1|)得|a|<|a-1|;
∴解得$a<\frac{1}{2}$;
∴a的取值范圍是(-∞,$\frac{1}{2}$).
故答案為:(-∞,$\frac{1}{2}$).
點(diǎn)評(píng) 考查指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,f(x),g(x)在區(qū)間I上都為增函數(shù)時(shí),f(x)+g(x)在I上也是增函數(shù),偶函數(shù)的定義,以及增函數(shù)定義的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | ||||
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | { x|1<x<3} | B. | { x|-1≤x<3} | C. | { x|x<-1} | D. | { x|x>3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com