8.設(shè)曲線y=ax+ln(x+1)在點(diǎn)(0,0)處的切線方程為y=x,則a=( 。
A.0B.1C.2D.3

分析 求出導(dǎo)數(shù),求得切線的斜率,由切線方程可得a+1=1,即可得到a的值.

解答 解:y=ax+ln(x+1)的導(dǎo)數(shù)為y′=a+$\frac{1}{x+1}$,
在點(diǎn)(0,0)處的切線斜率為a+1=1,
解得a=0,
故選A.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,注意運(yùn)用導(dǎo)數(shù)的幾何意義,正確求導(dǎo)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x},x<0\\ 2{(x-1)^2}-1,x≥0\end{array}\right.$.
(1)作出函數(shù)f(x)圖象的簡(jiǎn)圖,請(qǐng)根據(jù)圖象寫出函數(shù)f(x)的單調(diào)減區(qū)間;
(2)求解方程$f(x)=\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知有一列數(shù):1,3,6,10,15,…,其規(guī)律是第1個(gè)數(shù)是1,第2個(gè)數(shù)比第1個(gè)數(shù)大2,第3個(gè)數(shù)比第2個(gè)數(shù)大3.第4個(gè)數(shù)比第3個(gè)數(shù)大4,…,以此類推.請(qǐng)畫出計(jì)算這一列數(shù)的第100個(gè)數(shù)的值的程序框圖,并寫出該算法的程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知f(x)=loga(x+$\frac{a}{x}$-2)的值域?yàn)镽,則實(shí)數(shù)a取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.△ABC中,三內(nèi)角A,B,C成等差數(shù)列,對(duì)應(yīng)三邊a,b,c成等比數(shù)列,則此三角形是( 。
A.等腰直角三角形B.等邊三角形C.等腰三角形D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.${({ax+\frac{1}{ax}})^9}$的展開式中x3的系數(shù)為-84,則a=-1.(用數(shù)字填寫答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知tanα=3,則
(1)$\frac{2sinα-3cosα}{4sinα-9cosα}$=1;
(2)sin2α-3sinαcosα+1=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)左右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)點(diǎn)F1作直線l與橢圓交于M,N兩點(diǎn),若|MF2|=|F1F2|,且3|MF1|=4|NF1|,則橢圓的離心率是$\frac{5}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合P={x|x2-3x+b=0},Q={x|(x+1)(x2+3x-4)=0}
(1)若b=4是否存在集合M使得P?M⊆Q?若存在,求出所有符合題意的集合M,若不存在,請(qǐng)說(shuō)明理由
(2)P能否成為Q的一個(gè)子集?若能,求出b的值或取值范圍,若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案