13.已知p:?x∈R,x2-x+1>0,q:?x∈(0,+∞),sinx>1,則下列命題為真命題的是(  )
A.p∧qB.¬p∨qC.p∨¬qD.¬p∧¬q

分析 分別判斷出p,q的真假,從而判斷出其復(fù)合命題的真假即可.

解答 解:關(guān)于p:?x∈R,x2-x+1=${(x-\frac{1}{2})}^{2}$+$\frac{3}{4}$>0,成立,
故命題p是真命題,
關(guān)于q:?x∈(0,+∞),sinx>1,
∵?x∈(0,+∞),sinx≤1,
故命題q是假命題,
故p∨¬q是真命題,
故選:C.

點評 本題考查了二次函數(shù)、三角函數(shù)的性質(zhì),考查復(fù)合命題的判斷,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)$\frac{3+i}{x-i}$(x∈R)在復(fù)平面內(nèi)對應(yīng)的點位于以原點O為圓心,以$\sqrt{2}$為半徑的圓周上,則x的值為( 。
A.2B.1+3iC.±2D.$±\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知直線$x=\frac{π}{3}$過函數(shù)f(x)=sin(2x+φ)(其中$-\frac{π}{2}<φ<\frac{π}{2}$)圖象上的一個最高點,則$f(\frac{5π}{6})$的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x,y∈R+,$\frac{1}{x}$+$\frac{1}{y+1}$=1,則2x+y的最小值是2+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若某市8所中學(xué)參加中學(xué)生比賽的得分用莖葉圖表示(如圖)其中莖為十位數(shù),葉為個位數(shù),則這組數(shù)據(jù)的平均數(shù)和方差分別是(  )
A.91.5、5B.91、5C.92、5.5D.92、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.Sn為數(shù)列{an}的前n項和,已知Sn=$\frac{1}{2}•{3^n}+\frac{3}{2}$.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足anbn=log3an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C所對的邊分別為a,b,c.且cosB=-$\frac{1}{2}$.
(Ⅰ)若a=2,b=2$\sqrt{3}$,求角C;
(Ⅱ)求sinA•sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)上是減函數(shù)的是( 。
A.$f(x)=\frac{1}{x^2}$B.f(x)=x2C.$f(x)=\frac{1}{x}$D.f(x)=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.利用三角函數(shù)線求滿足tanα≥$\frac{\sqrt{3}}{3}$的角α的范圍.

查看答案和解析>>

同步練習(xí)冊答案