【題目】選擇適當(dāng)?shù)淖C明方法證明下列問(wèn)題
(1)設(shè)是公比為的等比數(shù)列且,證明數(shù)列不是等比數(shù)列.
(2)設(shè)為虛數(shù)單位,為正整數(shù),,證明:.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析.
【解析】
(1)要想證明數(shù)列不是等比數(shù)列.可以使用反證法。先假設(shè)數(shù)列是等比數(shù)列,根據(jù)數(shù)學(xué)推理,得出一個(gè)錯(cuò)誤結(jié)論,從而假設(shè)不成立,本題得證。
(2)對(duì)于關(guān)于正整數(shù)的有關(guān)命題,一般可以使用數(shù)學(xué)歸納法。
(1)用反證法:設(shè)是公比為的等比數(shù)列,數(shù)列是等比數(shù)列.
①當(dāng)存在,使得成立時(shí),數(shù)列不是等比數(shù)列.
②當(dāng),使得成立時(shí),則,
化為.
∵,,,故矛盾.
綜上兩種情況,假設(shè)不成立,故原結(jié)論成立.
(2)1°當(dāng)時(shí),左邊,右邊,
所以命題成立.
2°假設(shè)當(dāng)時(shí),命題成立,
即,
則當(dāng)時(shí),
.
所以,當(dāng)時(shí),命題也成立.
綜上所述,(為正整數(shù))成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知實(shí)數(shù)滿(mǎn)足約束條件
(1)若點(diǎn)在上述不等式所表示的平面區(qū)域內(nèi),求實(shí)數(shù)的取值范圍.
(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單調(diào)遞增的等比數(shù)列滿(mǎn)足,且是的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,對(duì)任意正數(shù)數(shù), 恒成立,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行購(gòu)物抽獎(jiǎng)促銷(xiāo)活動(dòng),規(guī)定每位顧客從裝有編號(hào)為0,1,2,3四個(gè)相同小球的抽獎(jiǎng)箱中,每次取出一球,記下編號(hào)后放回,連續(xù)取兩次,若取出的兩個(gè)小球號(hào)碼之和等于6,則中一等獎(jiǎng),等于5中二等獎(jiǎng),等于4或3中三等獎(jiǎng).
(1)求中三等獎(jiǎng)的概率;
(2)求中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知4名學(xué)生和2名教師站在一排照相,求:
(1)中間二個(gè)位置排教師,有多少種排法?
(2)首尾不排教師,有多少種排法?
(3)兩名教師不站在兩端,且必須相鄰,有多少種排法?
(4)兩名教師不能相鄰的排法有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直三棱柱中,底面ABC為等腰直角三角形,,,,M是側(cè)棱上一點(diǎn),設(shè),用空間向量知識(shí)解答下列問(wèn)題.
1若,證明:;
2若,求直線(xiàn)與平面ABM所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在邊長(zhǎng)為60 cm的正方形鐵片的四角上切去相等的正方形,再把它沿虛線(xiàn)折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體箱子,箱底的邊長(zhǎng)是多少時(shí),箱子的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)若曲線(xiàn)在處的切線(xiàn)與直線(xiàn)垂直,求實(shí)數(shù)的值;
(2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;
(3)若上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)。
(1)若在區(qū)間上存在單調(diào)遞減區(qū)間,求的取值范圍;
(2)當(dāng)時(shí),在區(qū)間上的最大值為15,求在區(qū)間上的最小值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com