分析 (1)求出f(1),化簡(jiǎn)再由正弦定理和兩角和的正弦公式,結(jié)合同角的商數(shù)關(guān)系,即可得到A,B,C;
(2)通過(guò)f(2)=0,得到a,b,c的關(guān)系式,利用基本不等式推出a2+b2=2c2≥2ab,通過(guò)余弦定理求出C的范圍.
解答 解:(1)f(x)=a2x2-(a2-b2)x-4c2,f(1)=0,
即有b2=4c2,即b=2c,
由正弦定理可得sinB=2sinC,
由B=$\frac{π}{3}$+C,可得sin($\frac{π}{3}$+C)=2sinC,
$\frac{\sqrt{3}}{2}$cosC+$\frac{1}{2}$sinC=2sinC,即有$\sqrt{3}$cosC=3sinC,
tanC=$\frac{\sqrt{3}}{3}$,由0<C<π,可得C=$\frac{π}{6}$,
則B=$\frac{π}{3}$+$\frac{π}{6}$=$\frac{π}{2}$,A=$\frac{π}{3}$;
(2)∵f(x)=a2x2-(a2-b2)x-4c2,f(2)=0,
∴4a2-2(a2-b2)-4c2=0,
∴a2+b2-2c2=0,
∴a2+b2=2c2≥2ab,
當(dāng)且僅當(dāng),a=b=c時(shí)等號(hào)成立.
∵cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,
∴cosC=$\frac{{c}^{2}}{2ab}$≥$\frac{ab}{2ab}$=$\frac{1}{2}$,
∴0<C≤$\frac{π}{3}$.
∴角C的取值范圍為(0,$\frac{π}{3}$].
故答案為:$\frac{π}{3}$,$\frac{π}{2}$,$\frac{π}{6}$
點(diǎn)評(píng) 本題考查函數(shù)解析式的運(yùn)用:求值,同時(shí)考查正弦定理和余弦定理的運(yùn)用,三角函數(shù)的化簡(jiǎn)和求值,以及重要不等式的運(yùn)用,屬于中檔題和易錯(cuò)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m<-1 | B. | m>-6 | C. | -6<m<-5 | D. | m<-5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com