1.已知拋物線x2=2py的焦點(diǎn)坐標(biāo)為$(0,-\frac{1}{8})$,則拋物線上縱坐標(biāo)為-2的點(diǎn)到拋物線焦點(diǎn)的距離為( 。
A.$\frac{1}{8}$B.$\frac{5}{4}$C.$\frac{9}{4}$D.$\frac{17}{8}$

分析 先根據(jù)拋物線的方程求得準(zhǔn)線的方程,進(jìn)而利用點(diǎn)A的縱坐標(biāo)求得點(diǎn)A到準(zhǔn)線的距離,進(jìn)而根據(jù)拋物線的定義求得答案.

解答 解:依題意可知拋物線的焦點(diǎn)坐標(biāo)為$(0,-\frac{1}{8})$,準(zhǔn)線方程為:y=$\frac{1}{8}$,
∴縱坐標(biāo)為-2的點(diǎn)到準(zhǔn)線的距離為2+$\frac{1}{8}$=$\frac{17}{8}$,
根據(jù)拋物線的定義可知縱坐標(biāo)為-2的點(diǎn)與拋物線焦點(diǎn)的距離就是點(diǎn)A與拋物線準(zhǔn)線的距離,
∴縱坐標(biāo)為-2的點(diǎn)與拋物線焦點(diǎn)的距離為:$\frac{17}{8}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了拋物線的定義的運(yùn)用.考查了學(xué)生對(duì)拋物線基礎(chǔ)知識(shí)的掌握.屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.f(x)=$\frac{1}{tanx}$+$\frac{sin\frac{x}{2}cos\frac{x}{2}}{2co{s}^{2}\frac{x}{2}-1}$,則f($\frac{π}{8}$)的值為3$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.二項(xiàng)式${({|a|x-\frac{{\sqrt{3}}}{6}})^3}$的展開(kāi)式的第二項(xiàng)的系數(shù)為$-\frac{{\sqrt{3}}}{2}$,則$\int_{-2}^a{{x^2}dx}$的值為3或$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)=4cosxsin(x+\frac{π}{6})-1$.
(Ⅰ)求f(x)的最大值及此時(shí)的x的集合;
(Ⅱ)求f(x)的單調(diào)增區(qū)間;
(Ⅲ)若$f(α)=\frac{1}{2}$,求$sin(\frac{π}{6}-4α)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.空間四邊形的兩條對(duì)角線相互垂直,順次連接四邊中點(diǎn)的四邊形一定是( 。
A.空間四邊形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知直三棱柱ABC-A′B′C′滿足∠BAC=90°,AB=AC=$\frac{1}{2}$AA′=2,點(diǎn)M,N分別為A′B,B′C′的中點(diǎn).
(1)求證:MN∥平面A′ACC′;
(2)求證:A′N(xiāo)⊥平面BCN.
(3)求三棱錐C-MNB的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{x}^{2}+(a+1)x+a}{{x}^{2}}$為偶函數(shù).
(1)求實(shí)數(shù)a的值;
(2)記集合A={y|y=f(x),x∈{1,-2,3}},p=(lg2)2+lg2lg5+lg5+$\frac{1}{4}$,判斷p與集合A的關(guān)系;
(3)當(dāng)x∈[m,n](m>0,n>0)時(shí),若函數(shù)f(x)的值域?yàn)閇-$\frac{2}{m}$+2,-$\frac{n}{8}$+1],求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知k∈R,直線l1:x+ky=0過(guò)定點(diǎn)P,直線l2:kx-y-2k+2=0過(guò)定點(diǎn)Q,兩直線交于點(diǎn)M,則|MP|+|MQ|的最大值是(  )
A.2$\sqrt{2}$B.4C.4$\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若存在x∈(0,+∞),使不等式ax+3a-1<e-x成立,則實(shí)數(shù)a的取值范圍為( 。
A.{a|0<a<$\frac{1}{3}$}B.{a|a<$\frac{2}{3}$}C.{a|a<$\frac{2}{e+1}$}D.{a|a<$\frac{1}{3}$}

查看答案和解析>>

同步練習(xí)冊(cè)答案