9.(1)已知f(1-x)=2x+3,求f(x)的解析式;
(2)已知f(x)是二次函數(shù),f(0)=-3,f(-1)=f(3)=0,求f(x)的解析式.

分析 (1)通過換元法求函數(shù)的解析式即可;(2)先設(shè)出二次函數(shù)的解析式,根據(jù)待定系數(shù)法求出函數(shù)的解析式即可.

解答 解:(1)令1-x=t,則x=1-t,(2分)
f(t)=2(1-t)+3=-2t+5,(4分)
令t=x,則f(x)=-2x+5,
所以,f(x)的解析式為f(x)=-2x+5.(5分)
(2)設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0),(6分)
由題意得$\left\{\begin{array}{l}{c=-3}\\{a-b+c=0}\\{9a+3b+c=0}\end{array}\right.$,
解得a=1,b=-2,c=-3(9分)
所以f(x)的解析式為f(x)=x2-2x-3.(10分)

點評 本題考查了通過換元法和待定系數(shù)法求函數(shù)的解析式問題,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)y=f(x),x∈R滿足f(x+1)=f(x-1),且當x∈(-1,1]時,f(x)=1-x2,函數(shù)g(x)=$\left\{\begin{array}{l}{lg|x|,x≠0}\\{1,x=0}\end{array}\right.$,則h(x)=f(x)-g(x)在區(qū)間[-6,9]內(nèi)的零點個數(shù)是(  )
A.15B.14C.13D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)(x∈R)滿足f(x)=$\frac{2bx}{ax-1}$,a≠0,f(1)=1,使f(x)=2x成立的實數(shù)x只有一個.
 (Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)若數(shù)列{an}滿足a1=$\frac{2}{3}$,an+1=f(an)bn=$\frac{1}{{a}_{n}}$-1,n∈N+,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;
(Ⅲ)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知在公差不為零的等差數(shù)列{an}中,a5=3a2-1,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{a}_{n}+{a}_{n+1}}{{a}_{n}{a}_{n+1}}$,求數(shù)列{(-1)n•bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=$a-\frac{2}{{2}^{x}+1}$.
(1)證明:不論a為何實數(shù)f(x)恒為增函數(shù);
(2)當f(x)為奇函數(shù)時,確定實數(shù)a的值,并求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知不等式ax2+bx+c>0的解集是$\left\{{x\left|{-\frac{1}{2}<x<1}\right.}\right\}$,則cx2-bx+a<0的解集是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{3^x}(x≥3)}\\{f(x+1)(x<3)}\end{array}}\right.$,則f(log34)的值是( 。
A.4B.12C.36D.108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=Asin(ωx+φ)+b的圖象如圖所示,則f(1)+f(2)+…+f(2012)=( 。
A.2011B.$\frac{4023}{2}$C.2012D.$\frac{4025}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=(2sinx,sinx),$\overrightarrow$=(sinx,2$\sqrt{3}$cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且2acosB=bcosC+ccosB,若對任意滿足條件的A,不等式f(A)>m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案