6.函數(shù)f(x)=$\frac{\sqrt{2x+3}}{x+1}$的定義域是$[-\frac{3}{2},-1)∪(-1,+∞)$.

分析 根據(jù)二次根式的性質(zhì)得到關(guān)于x的不等式組,解出即可.

解答 解:由題意得:
$\left\{\begin{array}{l}{2x+3≥0}\\{x+1≠0}\end{array}\right.$,解得:x≥-$\frac{3}{2}$且x≠-1,
故函數(shù)的定義域是:$[-\frac{3}{2},-1)∪(-1,+∞)$.

點評 本題考查了求函數(shù)的定義域問題,考查二次根式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x-alnx,$g(x)=-\frac{1+a}{x}$(a∈R).
(1)若a=1,求函數(shù)f(x)在(2,f(2))處的切線方程;
(2)設(shè)函數(shù)h(x)=f(x)-g(x),求函數(shù)h(x)的單調(diào)區(qū)間;
(3)若在[1,e](e=2.718…)上存在一點x0,使得f(x0)<g(x0)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下面給出四個論斷:①{0}是空集;②若a∈N,則-a∉N;③集合A={x∈R|x2-2x+1=0}有兩個元素;④集合$B=\{x∈Q|\frac{6}{x}∈N\}$是有限集.其中正確的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知全集U=R,集合$A=\left\{{\left.x\right|}\right.y=\sqrt{-{x^2}+4x-3}\left.{\;}\right\}$,$B=\left\{{\left.y\right|}\right.y=\sqrt{-{x^2}+4x-3}\left.{\;}\right\}$,
(1)分別求:∁R(A∩B),(∁RB)∪A;
(2)已知C={x|a<x<a+3},若B⊆C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.從4月1日開始,有一新款服裝投入某商場銷售,4月1日該款銷售出10件,第二天銷售出25件,第三天銷售出40件,以后,每天售出的件數(shù)分別遞增15件,直到4月12號日銷售量達到最大,然后,每天銷售的件數(shù)分別遞減10件.
(1)記該款服裝四月份日銷售量與銷售天數(shù)n的關(guān)系為an,求an
(2)求四月份的總銷售量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若a為實數(shù),解關(guān)于x的不等式ax2+(a-2)x-2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.兩臺機床同時生產(chǎn)直徑為10的零件,為了檢驗產(chǎn)品質(zhì)量,質(zhì)量質(zhì)檢員從兩臺機床的產(chǎn)品中各抽取4件進行測量,結(jié)果如下:
機床甲109.81010.2
機床乙10.1109.910
如果你是質(zhì)量檢測員,在收集到上述數(shù)據(jù)后,你將通過怎樣的運算來判斷哪臺機床生產(chǎn)的零件質(zhì)量更符合要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=2x+$\frac{1}{x}$-1(x<0),則f(x)( 。
A.有最小值$2\sqrt{2}-1$B.有最小值$-(2\sqrt{2}+1)$C.有最大值$2\sqrt{2}-1$D.有最大值$-(2\sqrt{2}+1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,AB⊥AC,AB=3,AC=4,D,E分別是邊AB,AC上的點,且AD=CE=x,設(shè)四邊形BDEC的面積為S,周長為c.
(1)分別寫出S,c關(guān)于x的函數(shù)解析式,并指出它們的定義域;
(2)分別求S,c的最小值及取最小值時相應(yīng)x的值;
(3)設(shè)BC的中點為F,問:是否存在x值,使△DEF的面積恰為△ABC面積的$\frac{1}{4}$?若存在,求出x值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案