【題目】已知數(shù)列的奇數(shù)項(xiàng)是首項(xiàng)為1的等差數(shù)列,偶數(shù)項(xiàng)是首項(xiàng)為2的等比數(shù)列.設(shè)數(shù)列的前n項(xiàng)和為且滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)若求正整數(shù)的值;
(3)是否存在正整數(shù),使得恰好為數(shù)列的一項(xiàng)?若存在,求出所有滿足條件的正整數(shù);若不存在,請說明理由.
【答案】(1)(2)(3)存在兩個(gè)正整數(shù);1或2
【解析】
(1)設(shè)的奇數(shù)項(xiàng)構(gòu)成的等差數(shù)列的公差為,偶數(shù)項(xiàng)構(gòu)成的等比數(shù)列的公比為,運(yùn)用通項(xiàng)公式,解方程可得,,即可得到所求通項(xiàng)公式;(2)當(dāng)為奇數(shù)時(shí),當(dāng)為偶數(shù)時(shí),運(yùn)用通項(xiàng)公式,解方程可得的值;(3)求得,,若為數(shù)列中的一項(xiàng),整理化簡求得,的值,再由數(shù)學(xué)歸納法證明,即可得到結(jié)論.
(1)設(shè)的奇數(shù)項(xiàng)構(gòu)成的等差數(shù)列的公差為偶數(shù)項(xiàng)構(gòu)成的等比數(shù)列的公比為則
由已知,得
故數(shù)列的通項(xiàng)公式為:
(2)當(dāng)k為奇數(shù)時(shí),由得
由于而僅在時(shí)為正整數(shù),與為奇數(shù)矛盾!
當(dāng)k為偶數(shù)時(shí),由得
綜上,得
(3)由(1)可求得
若為數(shù)列中的一項(xiàng),則(為正奇數(shù))或(為正偶數(shù))
(i)若(為正奇數(shù)),則
當(dāng)時(shí),,結(jié)論成立;
當(dāng)時(shí),由得解得
由于為正奇數(shù),故此時(shí)滿足條件的正整數(shù)k不存在.
(ii)若(為正偶數(shù)),
顯然,則
由得得
由為正偶數(shù)得為正偶數(shù),因此,從而
當(dāng)時(shí),;下面用數(shù)學(xué)歸納法證明:當(dāng)時(shí),
①當(dāng)時(shí),顯然;
②假設(shè)當(dāng) 時(shí),有 ;則當(dāng) 時(shí),
由得,
故
即時(shí),結(jié)論成立.
由①,②知:時(shí),
綜合(i),(ii)得:存在兩個(gè)正整數(shù),1或2,使為數(shù)列中的項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名射擊運(yùn)動(dòng)員在進(jìn)行射擊訓(xùn)練,已知甲命中10環(huán),9環(huán),8環(huán)的概率分別是,,,乙命中10環(huán),9環(huán),8環(huán)的概率分別是,,,任意兩次射擊相互獨(dú)立.
(1)求甲運(yùn)動(dòng)員兩次射擊命中環(huán)數(shù)之和恰好為18的概率;
(2)現(xiàn)在甲、乙兩人進(jìn)行射擊比賽,每一輪比賽兩人各射擊1次,環(huán)數(shù)高于對方為勝,環(huán)數(shù)低于對方為負(fù),環(huán)數(shù)相等為平局,規(guī)定連續(xù)勝利兩輪的選手為最終的勝者,比賽結(jié)束,求恰好進(jìn)行3輪射擊后比賽結(jié)束的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,,.
(1)求中所有元素的和,并寫出集合中元素的個(gè)數(shù);
(2)求證:能將集合分成兩個(gè)沒有公共元素的子集和,,使得成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,短軸長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過定點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列與滿足,.
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若,且數(shù)列是公比等于2的等比數(shù)列,求的值,使數(shù)列也是等比數(shù)列;
(3)若,且,數(shù)列有最大值與最小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B是海岸線OM、ON上兩個(gè)碼頭,海中小島有碼頭Q到海岸線OM、ON的距離分別為、,測得,,以點(diǎn)O為坐標(biāo)原點(diǎn),射線OM為x軸的正半軸,建立如圖所示的直角坐標(biāo)系,一艘游輪以小時(shí)的平均速度在水上旅游線AB航行(將航線AB看作直線,碼頭Q在第一象限,航線BB經(jīng)過點(diǎn)Q).
(1)問游輪自碼頭A沿方向開往碼頭B共需多少分鐘?
(2)海中有一處景點(diǎn)P(設(shè)點(diǎn)P在平面內(nèi),,且),游輪無法靠近,求游輪在水上旅游線AB航行時(shí)離景點(diǎn)P最近的點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于雙曲線:(),若點(diǎn)滿足,則稱在的外部;若點(diǎn)滿足,則稱在的內(nèi)部.
(1)若直線上點(diǎn)都在的外部,求的取值范圍;
(2)若過點(diǎn),圓()在內(nèi)部及上的點(diǎn)構(gòu)成的圓弧長等于該圓周長的一半,求、滿足的關(guān)系式及的取值范圍;
(3)若曲線()上的點(diǎn)都在的外部,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使不等式f(x)≥2x-3對任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)由方程到確定,對于函數(shù)給出下列命題:
①對任意,都有恒成立:
②,使得且同時(shí)成立;
③對于任意恒成立;
④對任意,,
都有恒成立.其中正確的命題共有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com