8.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且$\frac{b-c}{a+c}$=$\frac{sinA}{sinB+sinC}$,則B=$\frac{2π}{3}$.

分析 由正弦定理化簡已知等式$\frac{b-c}{a+c}$=$\frac{sinA}{sinB+sinC}$=$\frac{a}{b+c}$,整理可得:a2+c2-b2=-ac,由余弦定理可得cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=-$\frac{1}{2}$,結(jié)合范圍B∈(0,π)即可解得B的值.

解答 解:∵由正弦定理可得:sinA=$\frac{a}{2R}$,sinB=$\frac{2R}$,sinC=$\frac{c}{2R}$,
∴$\frac{b-c}{a+c}$=$\frac{sinA}{sinB+sinC}$=$\frac{a}{b+c}$,整理可得:a2+c2-b2=-ac,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{-ac}{2ac}$=-$\frac{1}{2}$,
∴由B∈(0,π),可得:B=$\frac{2π}{3}$.
故答案為:$\frac{2π}{3}$.

點評 本題主要考查了正弦定理,余弦定理在解三角形中的應(yīng)用,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x),g(x)均為奇函數(shù),定義域都為[-a,a](a>0),則f(g(x))為( 。
A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.無法判斷奇偶性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.方程(1+λ)x+(2λ-1)y+(1-8λ)=0(λ∈R)過某定點,此定點的坐標(biāo)是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2ax+4a(x<1)}\\{(a-3)x+4a(x≥1)}\end{array}\right.$,滿足對任意x1≠x2,都有 $\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,則a的取值范圍是( 。
A.(0,$\frac{3}{4}$)B.(0,$\frac{3}{4}$]C.(0,1)D.[1,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,角A、B、C成等差數(shù)列,b=$\sqrt{3}$,則△ABC的周長的最大值為( 。
A.3$+\sqrt{3}$B.2$+\sqrt{3}$C.1$+2\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知x,y滿足$\left\{\begin{array}{l}{-x+y-2≥0}\\{x+y-4≤0}\\{x-3y+3≤0}\end{array}\right.$,則z=-3x+y的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.方程2x+x=2,log2x+x=2,2x=log2(-x)的根分別為a,b,c,則a,b,c的大小關(guān)系為c<a<b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在銳角△ABC中,已知AB=2,∠B=2∠C,則AC的取值范圍是( 。
A.(2$\sqrt{2}$,2$\sqrt{3}$)B.(2,2$\sqrt{2}$)C.(2$\sqrt{2}$,4)D.(2,2$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年安徽豪州蒙城縣一中高二上月考一數(shù)學(xué)試卷(解析版) 題型:填空題

在等差數(shù)列中,,則____________.

查看答案和解析>>

同步練習(xí)冊答案