A. | (0,$\frac{3}{4}$) | B. | (0,$\frac{3}{4}$] | C. | (0,1) | D. | [1,$\frac{4}{3}$] |
分析 根據(jù)題中條件,可以先判斷出函數(shù)f(x)在R上單調(diào)遞減,再結(jié)合分段函數(shù)的解析式,要每一段都是減函數(shù),且分界點(diǎn)時(shí)左段函數(shù)的函數(shù)值要大于等于右段函數(shù)的函數(shù)值,列出不等關(guān)系,求解即可得到a的取值范圍.
解答 解:∵對(duì)任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,
∴x1-x2與f(x1)-f(x2)異號(hào),
根據(jù)函數(shù)單調(diào)性的定義,可知f(x)在R上是單調(diào)遞減函數(shù),
∴當(dāng)x≥1時(shí),f(x)=(a-3)x+4a為減函數(shù),則a-3<0,即a<3,①
且當(dāng)x=1時(shí),有最大值[(a-3)x+4a]max=5a-3;
當(dāng)x<1時(shí),f(x)=x2-2ax+4a為二次函數(shù),圖象開口向上,對(duì)稱軸為x=a,
若f(x)在(-∞,1)上為減函數(shù),則對(duì)稱軸在區(qū)間右側(cè),即a≥1,②
且(x2-2ax+4a)min>f(1)=1+2a;
又由題意,函數(shù)在定義域R上單調(diào)遞減,
則(x2-2ax+4a)min≥[(a-3)x+4a]max,
即1+2a≥5a-3,解得a≤$\frac{4}{3}$;③
綜合①②③可得a的取值范圍:1≤a≤$\frac{4}{3}$,
故選:D.
點(diǎn)評(píng) 本題考查了函數(shù)單調(diào)性的判斷與證明,注意一般單調(diào)性的證明選用定義法證明,證明的步驟是:設(shè)值,作差,化簡,定號(hào),下結(jié)論.對(duì)于分段函數(shù)的問題,一般選用分類討論和數(shù)形結(jié)合的思想方法進(jìn)行求解.注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com