分析 (Ⅰ)由已知得AD⊥CD,AE⊥CD,由此能證明CD⊥面ADE.
(Ⅱ)過E作EF⊥AD交AD于F,連BF,則∠EBF為BE與平面ABCD所成的角,由此能求出BE與平面ABCD所成角的余弦值.
解答 證明:(Ⅰ)∵正方形ABCD,∴AD⊥CD,(2分)
∵AE⊥平面CDE,∴AE⊥CD,(5分)
又∵AE∩AD=A,
∴CD⊥面ADE.(7分)
解:(Ⅱ)過E作EF⊥AD交AD于F,連BF,
∵CD⊥面ADE,CD⊥EF,CD∩AD=D,(9分)
∴EF⊥平面ABCD,
∴∠EBF為BE與平面ABCD所成的角,(12分)
∵BE=$\sqrt{5}$,$EF=\frac{{\sqrt{3}}}{2},AF=\frac{1}{2}$,∴$BF=\frac{{\sqrt{17}}}{2}$,
∴$cos∠BEF=\frac{BF}{BE}=\frac{{\frac{{\sqrt{17}}}{2}}}{{\sqrt{5}}}=\frac{{\sqrt{85}}}{10}$.
∴BE與平面ABCD所成角的余弦值為$\frac{\sqrt{85}}{10}$.(15分)
點(diǎn)評(píng) 本題考查線面垂直的證明,考查線面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,1,1) | B. | (1,1,-1) | C. | (-1,1,1) | D. | (1,-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\sqrt{3},0})∪({\sqrt{3},+∞})$ | B. | $({-\sqrt{3},0})∪({0,\sqrt{3}})$ | C. | $({-∞,-\sqrt{3}})∪({0,\sqrt{3}})$ | D. | $({-∞,-\sqrt{3}})∪({\sqrt{3},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com