8.函數(shù)f(x)=$\sqrt{3}$sinx•cosx的最小正周期為π,f(x)的最小值是$-\frac{{\sqrt{3}}}{2}$.

分析 化簡可得f(x)=$\frac{\sqrt{3}}{2}$sin2x,由周期公式可得周期,由振幅的意義可得最小值.

解答 解:化簡可得f(x)=$\sqrt{3}$sinx•cosx=$\frac{\sqrt{3}}{2}$sin2x,
∴函數(shù)的最小正周期T=$\frac{2π}{2}$=π,
當(dāng)sin2x=-1時,函數(shù)取最小值$-\frac{{\sqrt{3}}}{2}$.
故答案為:π;$-\frac{{\sqrt{3}}}{2}$

點評 本題考查三角函數(shù)的周期性和最值,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.命題p:復(fù)數(shù)z=(m2+m+1)+(m2-3m)i,m∈R表示的點位于復(fù)平面第四象限
命題q:函數(shù)f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在R上是增函數(shù)
如果命題“p∧q”為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,點E在CC1上且C1E=3EC.
(Ⅰ)證明:A1C⊥平面BED;
(Ⅱ)求向量$\overrightarrow{{A_1}C}$和$\overrightarrow{D{C_1}}$所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在正三棱柱ABC-A1B1C1中,已知AB=2,CC1=$\sqrt{2}$,則異面直線AB1和BC1所成角的余弦值為(  )
A.0B.$\frac{\sqrt{42}}{7}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,在三棱柱A1B1C1-A2B2C2中,各側(cè)棱均垂直于底面,∠A1B1C1=90°,A1B1=B1C1=3,C1M=2B1N=2,則直線B1C1與平面A1MN所成角的正弦值為$\frac{\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,邊長為2的正方形ABCD所在的平面與△CDE所在的平面交于CD,
且AE⊥平面CDE,AE=1.
(Ⅰ)求證:CD⊥平面ADE;
(Ⅱ)求BE與平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知定義在R上的偶函數(shù)f(x),當(dāng)x>0時,f(x)=0.001x,則$f(-\frac{1}{3})$=$\frac{1}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,正方體的底面與正四面體的底面在同一平面α上,且AB∥CD,則直線EF與正方體的六個面所在的平面相交的平面?zhèn)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知${A}_{n}^{n}$+${A}_{n-1}^{n-1}$=x${A}_{n+1}^{n+1}$,求x的值.

查看答案和解析>>

同步練習(xí)冊答案