1.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,且f(0)=f($\frac{π}{3}$),則( 。
A.f(x)的最小正周期為2πB.f(x)的圖象關(guān)于直線x=$\frac{5π}{6}$對稱
C.f($\frac{2π}{3}$)=-2D.f(x)在[0,$\frac{π}{4}$]上是增函數(shù)

分析 根據(jù)函數(shù)圖象的對稱軸得出f(x)的對稱軸,結(jié)合函數(shù)圖象求出f(x)的周期和f(x)的其他對稱軸.

解答 解:∵f(0)=f($\frac{π}{3}$),∴f(x)的圖象在y軸右側(cè)的第一條對稱軸為x=$\frac{π}{6}$.故D錯誤;
∴f(x)的最小正周期T=4×($\frac{5π}{12}-\frac{π}{6}$)=π.故A錯誤.
∴f(x)的圖象在y軸右側(cè)的第二條對稱軸為x=$\frac{π}{6}+\frac{π}{2}$=$\frac{2π}{3}$.∴f($\frac{2π}{3}$)=-1.故C正確;
f(x)的圖象在y軸右側(cè)的第三條對稱軸為x=$\frac{π}{6}+π$=$\frac{7π}{6}$,故B錯誤.
故選C.

點(diǎn)評 本題考查了三角函數(shù)的圖象與性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2+bx+c和g(x)=-bx,其中x∈R,a、b、c為常數(shù).
(1)若函數(shù)f(x)的圖象與g(x)的圖象相交于點(diǎn)A(-3,3)和B(1,-1),求函數(shù)f(x)和g(x)的解析式;
(2)若f(2)=0,若a>b>c,且存在實(shí)數(shù)m滿足f(m)<0,求證:f(m+5)>0;
(3)若b=-1,a>0,c>0,設(shè)h(x)=$\frac{f(x)}{g(x)}$(x>0),求函數(shù)h(x)在x∈[2,4]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知等差數(shù)列{an}中,有$\frac{{{a_{n+1}}+{a_{n+2}}+…+{a_{2n}}}}{n}=\frac{{{a_1}+{a_2}+…+{a_{3n}}}}{3n}$成立.類似地,在等比數(shù)列{bn}中,
有${\;}^n\sqrt{{a_{n+1}}{a_{n+2}}…{a_{2n}}}={\;}^{3n}\sqrt{{a_1}{a_2}…{a_{3n}}}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={(x,y)|x2+y2≤|x|+|y|,x,y∈R},則集合A所表示圖形的面積為( 。
A.1+πB.2C.2+πD.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中與函數(shù)y=x為同一函數(shù)的是( 。
A.y=$\sqrt{{x}^{2}}$B.y=($\sqrt{x}$)2C.y=$\frac{{x}^{2}}{x}$D.y=lg10x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{-(x+1)}^{2}+4p,x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$且f[f($\sqrt{2}$)]=$\frac{7}{4}$
(Ⅰ)求實(shí)數(shù)p的值;
(Ⅱ)若方程f(x)-m=0有3個不同的解,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若x∈[-1,16]時,f(x)≤n+1恒成立,求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.化簡:$\frac{a-b}{\sqrt{a}+\sqrt}$+$\frac{(\sqrt{a})^{3}+(\sqrt)^{3}}{a-\sqrt{ab}+b}$=2$\sqrt{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知定義在R上的函數(shù)f(x)滿足:對任意x1,x2∈R(x1≠x2),均有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,e為自然對數(shù)的底,則( 。
A.f($-\frac{π}{2}$)<f($\sqrt{2}$)<f(e)B.f(e)<f($-\frac{π}{2}$)<f($\sqrt{2}$)C.f(e)<f($\sqrt{2}$)<f($-\frac{π}{2}$)D.f($\sqrt{2}$)<f($-\frac{π}{2}$)<f(e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,邊長為2的正方形ABCD中,點(diǎn)E、F分別  是AB、BC的中點(diǎn),將△ADE,△EBF,△FCD分別沿DE,EF,F(xiàn)D折起,使得A、B、C三點(diǎn)重合于點(diǎn)A′,若四面體A′EFD的四個頂點(diǎn)在同一個球面上,則該球的表面積為( 。
A.B.C.11πD.

查看答案和解析>>

同步練習(xí)冊答案