2.如圖,在邊長為3的正方形內(nèi)有區(qū)域A(陰影部分所示),張明同學(xué)用隨機(jī)模擬的方法求區(qū)域A的面積.若每次在正方形內(nèi)每次隨機(jī)產(chǎn)生10000個點,并記錄落在區(qū)域A內(nèi)的點的個數(shù).經(jīng)過多次試驗,計算出落在區(qū)域A內(nèi)點的個數(shù)平均值為6600個,則區(qū)域A的面積約為(  )
A.5B.6C.7D.8

分析 先利用古典概型的概率公式求概率,再求區(qū)域A的面積的估計值.

解答 解:由題意,∵在正方形中隨機(jī)產(chǎn)生了10000個點,落在區(qū)域A內(nèi)點的個數(shù)平均值為6600個,
∴概率P=$\frac{6600}{10000}$=$\frac{33}{50}$,
∵邊長為3的正方形的面積為9,
∴區(qū)域A的面積的估計值為$\frac{33}{50}×9$≈6.
故選:B.

點評 本題考查古典概型概率公式,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.直線2x+2y-1=0和直線mx-y+1=0的夾角為$\frac{π}{4}$,則m=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知拋物線x2=-4y的準(zhǔn)線與雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的兩條漸近線圍成一個等腰直角三角形,則雙曲線的離心率是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在△ABC中,點D在BC邊上,AD⊥AC,$cosB=\frac{{\sqrt{6}}}{3}$,$AB=3\sqrt{2}$,$BD=\sqrt{3}$.
(Ⅰ)求△ABD的面積;
(Ⅱ)求線段DC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知等比數(shù)列{an}的公比為2,若a2+a3=4,則a1+a4=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{e^x,x≤0}\\{lnx,x>0}\end{array}\right.$,其中e為自然對數(shù)的底數(shù),則f[f($\frac{1}{2}$)]=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法正確的個數(shù)是( 。
①若f(x)=$\frac{1}{{2}^{x}+1}$+a為奇函數(shù),則a=$\frac{1}{2}$;
②“在△ABC中,若sinA>sinB,則A>B”的逆命題是假命題;
③“三個數(shù)a,b,c成等比數(shù)列”是“b=$\sqrt{ac}$”的既不充分也不必要條件;
④命題“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,x03-x02+1>0”.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.直線$\sqrt{3}$x-y+a=0(a∈R,a為常數(shù))的傾斜角是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.動點P到點M(3,0)及點N(1,0)的距離之差為2,則點P的軌跡是( 。
A.雙曲線B.雙曲線的一支C.兩條射線D.一條射線

查看答案和解析>>

同步練習(xí)冊答案