7.已知$\overrightarrow{m}$=(sinωx,cosωx),$\overrightarrow{n}$=(cosωx,cosωx)其中ω>0,若函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$的圖象上相鄰兩對稱軸間得距離為2π
(1)求方程f(x)-$\frac{\sqrt{6}}{4}$=0在區(qū)間[0,17]內(nèi)的解;
(2)若$\overrightarrow{m}$•$\overrightarrow{n}$=$\frac{1}{2}$+$\frac{\sqrt{2}}{4}$,求sinx;
(3)在△ABC中,a,b,c分別是角A,B,C的對邊,且滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的值域.

分析 (1)由數(shù)量積的坐標(biāo)表示結(jié)合倍角公式、兩角和的正弦化簡f(x)的解析式,再由已知求得ω,最后求解三角方程得答案;
(2)由$\overrightarrow{m}$•$\overrightarrow{n}$=$\frac{1}{2}$+$\frac{\sqrt{2}}{4}$,得$sin(\frac{x}{2}+\frac{π}{4})=\frac{1}{2}$,進(jìn)一步得$1-2si{n}^{2}(\frac{x}{2}+\frac{π}{4})=\frac{1}{2}$,轉(zhuǎn)化為倍角的余弦求解;
(3)由已知等式結(jié)合正弦定理求得B,由三角形內(nèi)角和定理得到A的范圍,則函數(shù)f(A)的值域可求.

解答 解:(1)$f(x)=\overrightarrow{m}•\overrightarrow{n}-\frac{1}{2}=sinωxcosωx+co{s}^{2}ωx-\frac{1}{2}$
=$\frac{1}{2}sin2ωx+\frac{1}{2}cos2ωx=\frac{\sqrt{2}}{2}sin(2ωx+\frac{π}{4})$,
∵函數(shù)f(x)的圖象上相鄰兩對稱軸間得距離為2π,
∴$\frac{T}{2}=2π$,T=$\frac{2π}{2ω}$,得$ω=\frac{1}{4}$,
∴f(x)=$\frac{\sqrt{2}}{2}sin(\frac{x}{2}+\frac{π}{4})$,
由f(x)-$\frac{\sqrt{6}}{4}$=0,得$\frac{\sqrt{2}}{2}sin(\frac{x}{2}+\frac{π}{4})$=$\frac{\sqrt{6}}{4}$,
即$sin(\frac{x}{2}+\frac{π}{4})=\frac{\sqrt{3}}{2}$,
∴$\frac{x}{2}+\frac{π}{4}=\frac{π}{3}+2kπ$,或$\frac{x}{2}+\frac{π}{4}=\frac{2π}{3}+2kπ,k∈Z$.
在區(qū)間[0,17]內(nèi)的解為$\frac{π}{6},\frac{5π}{6},\frac{25π}{6},\frac{29π}{6}$;
(2)若$\overrightarrow{m}$•$\overrightarrow{n}$=$\frac{1}{2}$+$\frac{\sqrt{2}}{4}$,則$sin(\frac{x}{2}+\frac{π}{4})=\frac{1}{2}$,
得$1-2si{n}^{2}(\frac{x}{2}+\frac{π}{4})=\frac{1}{2}$,
∴cos(x+$\frac{π}{2}$)=$\frac{1}{2}$,
得sinx=$-\frac{1}{2}$;
(3)∵(2a-c)cosB=bcosC,
∴由正弦定理得cosB=$\frac{1}{2}$,則B=$\frac{π}{3}$,
∴A∈(0,$\frac{2π}{3}$),則$\frac{A}{2}+\frac{π}{4}∈(\frac{π}{4},\frac{7π}{12})$,
故函數(shù)f(A)的值域為($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$].

點評 本題考查三角函數(shù)中的恒等變換應(yīng)用,考查了平面向量的數(shù)量積運算,考查余弦定理在解三角形中的應(yīng)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知i是虛數(shù)單位,復(fù)數(shù)$\frac{5}{1-i}$=( 。
A.i-2B.$\frac{5}{2}$+$\frac{i}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.A,B,C,D是同一球面上的四個點,△ABC中$∠BAC=\frac{π}{2},AB=AC,AD⊥$平面ABC,AD=2,$BC=\sqrt{6}$,則該球的表面積為10π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知圓C:x2+y2-4x+3=0,過原點的直線l與其交于不同的兩點A,B.
(Ⅰ)求直線l斜率k的取值范圍;
(Ⅱ)求線段AB的中點P的軌跡Γ的方程;
(Ⅲ)若直線m:y=ax+4與曲線Γ只有一個公共點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知f(x)=x3+sinx(x∈R)是(  )
A.偶函數(shù)B.奇函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$f(x)=cos2x+\sqrt{3}sin2x$,在下列四個命題中:
①函數(shù)的表達(dá)式可以改寫為$f(x)=2cos(2x-\frac{π}{3})$;
②當(dāng)$x=kπ+\frac{π}{6}$(k∈Z)時,函數(shù)取得最大值為2;
③若x1≠x2,且f(x1)=f(x2)=0,則${x_1}-{x_2}=\frac{kπ}{2}(k∈Z且k≠0)$;
④函數(shù)f(x)的圖象關(guān)于直線$x=\frac{2π}{3}$對稱;
其中正確命題的序號是①②③④(把你認(rèn)為正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)全集U={0,1,2,3},集合A={0,1,2},集合B={2,3},則(∁UA)∪B=( 。
A.B.{1,2,3}C.{0,1,2,3}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)a,b,c∈R+,且a+b+c=3,證明:$\frac{{a}^{4}}{^{2}+c}$+$\frac{^{4}}{{c}^{2}+a}$+$\frac{{c}^{4}}{{a}^{2}+b}$≥$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知α∈(0,$\frac{π}{2}$),β∈(一$\frac{π}{2}$,0),且coa(α-β)=$\frac{3}{5}$,sinβ=-$\frac{\sqrt{2}}{10}$,求α的值.

查看答案和解析>>

同步練習(xí)冊答案