分析 設(shè)函數(shù)F(a)=(x-2)a+x2-4x+4,由題意可得$\left\{\begin{array}{l}F(-1)>0\\ F(1)>0\end{array}\right.$,解不等式組可得.
解答 解:設(shè)函數(shù)F(a)=x2+(a-4)x+4-2a
=(x-2)a+x2-4x+4,可看作關(guān)于a的一次函數(shù),
∵對(duì)任意a∈[-1,1],上式值恒大于零,
∴只需$\left\{\begin{array}{l}F(-1)>0\\ F(1)>0\end{array}\right.$,$\left\{\begin{array}{l}{-(x-2)+x}^{2}-4x+4>0\\{x-2+x}^{2}-4x+4>0\end{array}\right.$,
解得x<1或x>3
故答案為:x<1或x>3.
點(diǎn)評(píng) 本題考查函數(shù)恒成立,變換主元是解決問(wèn)題的關(guān)鍵,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | a>c>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 菱形 | B. | 矩形 | C. | 正方形 | D. | 以上都不對(duì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{12}π$ | B. | $\frac{7π}{3}$ | C. | $2\sqrt{2}π$ | D. | 3π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)sinx為奇函數(shù) | B. | f(x)+cosx為偶函數(shù) | ||
C. | g(x)sinx為為偶函數(shù) | D. | g(x)+cosx為偶函數(shù) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com