15.用二分法求lnx+2x-6=0的近似解時(shí),能確定為解所在的區(qū)間是( 。
A.(0,1)B.(0,2)C.(1,2)D.(2,3)

分析 根據(jù)單調(diào)性求解f(1)=-4,f(2)=ln2-2<0,f(3)=ln3>0,據(jù)函數(shù)的零點(diǎn)判斷方法可得:零點(diǎn)在(2,3)內(nèi).

解答 解:令函數(shù)f(x)=lnx+2x-6,
可判斷在(0,+∞)上單調(diào)遞增,
∴f(1)=-4,f(2)=ln2-2<0,f(3)=ln3>0,
∴根據(jù)函數(shù)的零點(diǎn)判斷方法可得:零點(diǎn)在(2,3)內(nèi),
方程lnx+2x-6=0的近似解:在(2,3)內(nèi).
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的零點(diǎn),與方程的根的關(guān)系,根據(jù)函數(shù)的單調(diào)性判斷分析,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知集合A={x|x2-3x+2=0},B={x|ax-2=0},C={x|x2-mx+2=0}.
(1)若B⊆A,求實(shí)數(shù)a構(gòu)成的集合;
(2)若A∩C=C,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.圓O的直徑為BC,點(diǎn)A是圓周上異于B,C的一點(diǎn),且|AB|•|AC|=1,若點(diǎn)P是圓O所在平面內(nèi)的一點(diǎn),且$\overrightarrow{AP}=\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{9\overrightarrow{AC}}{|\overrightarrow{AC}|}$,則$\overrightarrow{PB}•\overrightarrow{PC}$的最大值為( 。
A.2$\sqrt{3}$B.9C.76D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,橢圓C與x軸正半軸交于A(yíng)點(diǎn),與y軸正半軸交于B(0,2),且$\overrightarrow{BF}$•$\overrightarrow{BA}$=4$\sqrt{2}$+4,過(guò)點(diǎn)D(4,0)作直線(xiàn)l交橢圓于不同兩點(diǎn)P,Q,則直線(xiàn)l的斜率的取值范圍是( 。
A.-1<k<$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$<k<$\frac{\sqrt{2}}{2}$C.-$\frac{\sqrt{2}}{2}$<k<1D.-1<k<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)F1,F(xiàn)2分別是短軸長(zhǎng)為6的橢圓E:$\frac{x^2}{a^2}$+${\frac{y}{b^2}^2}$=1(a>b>0)的左、右焦點(diǎn),過(guò)點(diǎn)F1的直線(xiàn)交橢圓E于A(yíng),B兩點(diǎn),且△ABF2的周長(zhǎng)為16.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)P為E上一點(diǎn),若PF1=3,求PF2的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距為2$\sqrt{6}$,橢圓C上任意一點(diǎn)到橢圓兩個(gè)焦點(diǎn)的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線(xiàn)l:y=kx-2與橢圓C交于A(yíng),B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)軸長(zhǎng)為8,且離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)過(guò)橢圓C的左焦點(diǎn)F1的直線(xiàn)l交橢圓于M、N兩點(diǎn),且該橢圓上存在點(diǎn)P,使得四邊形MONP(圖形上的字母按此順序排列)恰好為平行四邊形,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ax2-2ax+3a-4在區(qū)間(-1,1)上有一個(gè)零點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)若a=1,用二分法求f(x)=0在區(qū)間(-1,1)上的根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)y=x+$\frac{t}{x}$有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在$(0,\sqrt{t}]$上是減函數(shù),在$[\sqrt{t},+∞)$上是增函數(shù).
(1)已知f(x)=$\frac{{{x^2}-2x-4}}{x+2}$,x∈[-1,1],利用上述性質(zhì),求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)對(duì)于(1)中的函數(shù)f(x)和函數(shù)g(x)=-x-2a,若對(duì)任意x1∈[-1,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案