10.二手車經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如表的對應(yīng)數(shù)據(jù):
使用年數(shù) 2 4 6 8 10
 售價 16 13 9.5 74.5
(Ⅰ)試求y關(guān)于x的回歸直線方程;(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}^{2}}_{i}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)
(Ⅱ)已知每輛該型號汽車的收購價格為w=0.05x2-1.75x+17.2萬元,根據(jù)(Ⅰ)中所求的回歸方程,預(yù)測x為何值時,小王銷售一輛該型號汽車所獲得的利潤z最大?

分析 (Ⅰ)由表中數(shù)據(jù)計算$\overline{x}$、$\overline{y}$,求出$\stackrel{∧}$、$\stackrel{∧}{a}$,即可寫出回歸直線方程;
(Ⅱ)寫出利潤函數(shù)z=y-w,利用二次函數(shù)的圖象與性質(zhì)求出x=3時z取得最大值.

解答 解:(Ⅰ)由表中數(shù)據(jù)得,$\overline{x}$=$\frac{1}{5}$×(2+4+6+8+10)=6,
$\overline{y}$=$\frac{1}{5}$×(16+13+9.5+7+4.5)=10,
由最小二乘法求得
$\stackrel{∧}$=$\frac{2×16+4×13+6×9.5+8×7+10×4.5-5×6×10}{{2}^{2}{+4}^{2}{+6}^{2}{+8}^{2}{+10}^{2}-5{×6}^{2}}$=-1.45,
$\stackrel{∧}{a}$=10-(-1.45)×6=18.7,
所以y關(guān)于x的回歸直線方程為y=-1.45x+18.7;
(Ⅱ)根據(jù)題意,利潤函數(shù)為
z=y-w=(-1.45x+18.7)-(0.05x2-1.75x+17.2)=-0.05x2+0.3x+1.5,
所以,當(dāng)x=-$\frac{0.3}{2×(-0.05)}$=3時,二次函數(shù)z取得最大值;
即預(yù)測x=3時,小王銷售一輛該型號汽車所獲得的利潤z最大.

點評 本題考查了回歸直線方程的求法與應(yīng)用問題,也考查了二次函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,c=$\sqrt{{a}^{2}-^{2}}$)的左焦點與上頂點的直線為l,若坐標(biāo)原點O到直線l的距離為$\frac{c}{2}$,則橢圓的離心率為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知實數(shù)x、y滿足$\left\{{\begin{array}{l}{y≥0\;}\\{x+y≤0}\\{2x+y+2≤0}\end{array}}$,則$z={log_2}(\frac{y-1}{x-1}+\frac{3}{2})$的取值范圍是(-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知線性回歸直線方程是$\stackrel{∧}{y}$=1.23x+0.08,求m的值.
x23456
y2.23.8m6.57.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.若x2+2xy-y2=7(x,y∈R).求x2+y2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,四棱錐S-ABCD中,SA=SD=BC,底面ABCD為正方形,且平面SAD⊥平面ABCD,M,N分別是AB,SC的中點.
(1)求證:MM∥平面SAD;
(2)求二面角S-CM-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若O為△ABC內(nèi)一點,且2$\overrightarrow{OA}$$+7\overrightarrow{OB}$$+6\overrightarrow{OC}$=$\overrightarrow{0}$,三角形ABC的面積是三角形OAB面積的λ倍,則λ=( 。
A.$\frac{5}{2}$B.$\frac{15}{2}$C.$\frac{15}{7}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知實數(shù)x、y滿足方程x2+y2-4x+1=0.
(1)求$\frac{y}{x}$的最大值和最小值;
(2)求x2+y2的最大值和最小值;
(3)若b=x+y,求b的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xOy中,直線l的方程是y=8,圓C的參數(shù)方程是$\left\{\begin{array}{l}x=2cosφ\\ y=2+2sinφ\end{array}\right.$(φ為參數(shù)).以O(shè)為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線l和圓C的極坐標(biāo)方程;
(2)射線OM:θ=α(其中$0<α<\frac{π}{2}$)與圓C交于O、P兩點,與直線l交于點M,射線ON:$θ=α+\frac{π}{2}$與圓C交于O、Q兩點,與直線l交于點N,求$\frac{|OP|}{|OM|}•\frac{|OQ|}{|ON|}$的最大值;
(3)在(2)的條件下,求三角形OMN的內(nèi)切圓圓心的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案