分析 (I)由bcos2A=a(2-sinAsinB),利用正弦定理可得sinBcos2A=sinA(2-sinAsinB),可得sinB=2sinA,由cosB=$\frac{2\sqrt{7}}{7}$,可得sinB=$\sqrt{1-co{s}^{2}B}$,即可得出;
(II)由余弦定理可得:b2=a2+c2-2accosB,b=2a,c=$\sqrt{7}$,可得a,b.
解答 解:(I)∵bcos2A=a(2-sinAsinB),
∴sinBcos2A=sinA(2-sinAsinB),
∴sinBcos2A+sin2AsinB=2sinA,
∴sinB=2sinA,
∵cosB=$\frac{2\sqrt{7}}{7}$,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{\sqrt{21}}{7}$,
∴sinA=$\frac{1}{2}sinB$=$\frac{\sqrt{21}}{14}$;
(II)由余弦定理可得:b2=a2+c2-2accosB,b=2a,c=$\sqrt{7}$,
∴4a2=a2+7-$2\sqrt{7}acosB$=a2+7-2$\sqrt{7}$×$\frac{2\sqrt{7}}{7}$,
化為3a2+4a-7=0,解得a=1.
∴b=2.
∴a=1,b=2.
點(diǎn)評(píng) 本題考查了正弦定理余弦定理、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-2<x<1} | B. | {x|-2≤x<1} | C. | {x|-2≤x≤1} | D. | {x|-2<x≤1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-3)(2-x)≥0 | B. | (x-3)(2-x)>0 | C. | $\frac{2-x}{x-3}$≥0 | D. | $\frac{3-x}{x-2}$≥0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于直線x=$\frac{π}{12}$對(duì)稱 | B. | 關(guān)于直線x=$\frac{5π}{12}$對(duì)稱 | ||
C. | 關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱 | D. | 關(guān)于點(diǎn)($\frac{5π}{12}$,0)對(duì)稱 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com