A. | $\frac{π}{4}$ | B. | $\frac{π-2}{2}$ | C. | $\frac{π}{6}$ | D. | $\frac{4-π}{4}$ |
分析 根據(jù)題意,在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn)P,則P點(diǎn)到坐標(biāo)原點(diǎn)的距離小于1時(shí),點(diǎn)P位于圖中正方形OABC內(nèi),且在扇形OAC的內(nèi)部,如圖中的扇形部分.因此算出圖中扇形部分面積,再除以正方形OABC面積,即可求得本題的答案
解答 解:到坐標(biāo)原點(diǎn)的距離小于1的點(diǎn),位于以原點(diǎn)O為圓心、半徑為1的圓內(nèi),
區(qū)域D:設(shè)不等式組$\left\{\begin{array}{l}{0≤x≤1}\\{0≤y≤1}\end{array}\right.$表示的平面區(qū)域?yàn)镈,是表示正方形OABC,(如圖)
其中O為坐標(biāo)原點(diǎn),A(1,0),B(1,1),C(0,1).
因此在區(qū)域D內(nèi)隨機(jī)取一個(gè)點(diǎn)P,
則P點(diǎn)到坐標(biāo)原點(diǎn)的距離大于1時(shí),點(diǎn)P位于圖中正方形OABC內(nèi),
且在扇形OAC的內(nèi)部,如圖中的扇形部分
∵S正方形OABC=12=1,S扇形=$\frac{1}{4}•$π•12=$\frac{π}{4}$,所求概率為P=$\frac{S扇形}{S正方形OABC}$=$\frac{π}{4}$,
故選:A.
點(diǎn)評(píng) 本題給出不等式組表示的平面區(qū)域,求在區(qū)域內(nèi)投點(diǎn)使該到原點(diǎn)距離小于1的概率,著重考查了二元一次不等式組表示的平面區(qū)域和幾何概型等知識(shí)點(diǎn),屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 25π | B. | 26π | C. | 27π | D. | 28π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{2}$ | C. | 4 | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
傾向“平面幾何選講” | 傾向“坐標(biāo)系與參數(shù)方程” | 傾向“不等式選講” | 合計(jì) | |
男生 | 16 | 4 | 6 | 26 |
女生 | 4 | 8 | 12 | 24 |
合計(jì) | 20 | 12 | 18 | 50 |
P(k2≤k0) | 0.100 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 1 | C. | 0 | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com