8.已知復(fù)數(shù)w滿足w-4=(3-2w)i,z=5÷w+|w-2|.求w、z的值.

分析 利用復(fù)數(shù)的運(yùn)算法則、模的計算公式即可得出.

解答 解:∵w-4=(3-2w)i,
∴(1+2i)w=4+3i,
∴(1-2i)(1+2i)w=(4+3i)(1-2i),
化為5w=10-5i,即w=2-i.
∴z=5÷w+|w-2|=$\frac{5(2+i)}{(2-i)(2+i)}+|-i|$=2+i+1=3+i.
∴w=2-i,z=3+i.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、模的計算公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)A,B均為非空集合,且A∩B=∅,A∪B={1,2,3,…,n}(n≥3,n∈N*).記A,B中元素的個數(shù)分別為a,b,所有滿足“a∈B,且b∈A”的集合對(A,B)的個數(shù)為an
(1)求a3,a4的值;
(2)求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,$\overrightarrow{a}$與$\overrightarrow{a}$-$\overrightarrow$的夾角為150°,則|$\overrightarrow$|的取值范圍是( 。
A.[$\frac{1}{2}$,1)B.[$\frac{1}{2}$,+∞)C.[$\frac{\sqrt{3}}{2}$,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{x^2}(lnx+\frac{3}{2}-ax)$,a>0.
(Ⅰ)若a=2,求證:函數(shù)f(x)的導(dǎo)函數(shù)f′(x)≥0;
(Ⅱ)若函數(shù)f(x)在(0,+∞)上沒有單調(diào)性且沒有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.對定義在[0,1]上,并且同時滿足以下兩個條件的函數(shù)f(x)稱為M函數(shù):
(i) 對任意的x∈[0,1],恒有f(x)≥0;
(ii) 當(dāng)x1≥0,x2≥0,x1+x2≤1時,總有f(x1+x2)≥f(x1)+f(x2)成立.
則下列四個函數(shù)中不是M函數(shù)的個數(shù)是( 。
①f(x)=x2②f(x)=x2+1
③f(x)=ln(x2+1)④f(x)=2x-1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1,設(shè)(a,b)是區(qū)域$\left\{\begin{array}{l}x+y-8≤0\\ x>0\\ y>0\end{array}\right.$,內(nèi)的隨機(jī)點(diǎn),則函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率是(  )
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行下面的程序框圖,如果輸入的依次是1,2,4,8,則輸出的S為( 。
A.2B.2$\sqrt{2}$C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知直線l,m和平面α,β(  )
A.若l∥α,l∥β,則α∥βB.若l∥α,m∥α,則l∥mC.若l⊥α,m⊥β,則l∥mD.若l⊥α,l⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若a、b、c∈R,且ab+bc+ca=1,則下列不等式成立的是( 。
A.a2+b2+c2≥2B.(a+b+c)2≥3C.$\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$≥2$\sqrt{3}$D.a+b+c≤$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案