16.定義在(0,+∞)上的函數(shù)f(x)滿足下面三個條件:
①對任意正數(shù)a,b,都有f(a)+f(b)=f(ab);
②當(dāng)x>1時,f(x)<0;
③f(2)=-1
(I)求f(1)和$f(\frac{1}{4})$的值;
(II)試用單調(diào)性定義證明:函數(shù)f(x)在(0,+∞)上是減函數(shù);
(III)求滿足f(log4x)>2的x的取值集合.

分析 (Ⅰ)令a=b=1,代入計算即可求得f(1)=0;令a=b=2,求得f(4)=-2,令a=4,b=$\frac{1}{4}$,即可得到所求值;
(Ⅱ)運用單調(diào)性的定義證明,注意運用條件可得$\frac{{x}_{2}}{{x}_{1}}$>1,即有f($\frac{{x}_{2}}{{x}_{1}}$)<0;
(Ⅲ)f(log4x)>2即為f(log4x)>$f(\frac{1}{4})$,由(Ⅱ)f(x)在(0,+∞)上是減函數(shù),可得不等式組,解得即可得到所求集合.

解答 解:(Ⅰ)令a=b=1,可得2f(1)=f(1),
解得f(1)=0;
令a=b=2,可得2f(2)=f(4)=-2,
令a=4,b=$\frac{1}{4}$,可得f(4)+f($\frac{1}{4}$)=f(1)=0,
即有f($\frac{1}{4}$)=-f(4)=2;
(Ⅱ)證明:設(shè)x1,x2∈(0,+∞)且x1<x2
可得$\frac{{x}_{2}}{{x}_{1}}$>1,即有f($\frac{{x}_{2}}{{x}_{1}}$)<0,
則f(x2)=f(x1•$\frac{{x}_{2}}{{x}_{1}}$)=f(x1)+f($\frac{{x}_{2}}{{x}_{1}}$)<f(x1),
∴f(x)在(0,+∞)上是減函數(shù);
(Ⅲ)f(log4x)>2即為
f(log4x)>$f(\frac{1}{4})$,
由(Ⅱ)f(x)在(0,+∞)上是減函數(shù)
所以$\left\{\begin{array}{l}{log_4}x<\frac{1}{4}\\{log_4}x>0\end{array}\right.$,即為$\left\{\begin{array}{l}{0<x<\sqrt{2}}\\{x>1}\end{array}\right.$,
解得$1<x<\sqrt{2}$,
故不等式的解集為(1,$\sqrt{2}$).

點評 本題考查抽象函數(shù)的運用,考查賦值法求函數(shù)值的方法和運用單調(diào)性的定義證明得到,同時考查解不等式,注意運用單調(diào)性和函數(shù)的定義域,屬于中檔題和易錯題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知圓C:x2+y2-2x-7=0.
(1)過點P(3,4)且被圓C截得的弦長為4的弦所在的直線方程
(2)是否存在斜率為1的直線l,使l被圓C截得的弦AB的中點D到原點O的距離恰好等于圓C的半徑,若存在求出直線l的方程,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.給出下列四則函數(shù):
①sin(x-$\frac{3π}{2}$),y=cosx;②y=sinx,y=tanx•cosx;
③y=1-ln(x2),y=1-2lnx;④y=2+$\sqrt{{x}^{2}}$,y=2+$\root{3}{{x}^{3}}$.
其中,是相等函數(shù)的一共有( 。
A.1組B.2組C.3組D.4組

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.A、B兩城相距100km,在兩地之間距A城x km處D地建一核電站給A、B兩城供電,為保證城市安全,核電站距城市距離不得小于10km,已知供電費用與供電距離的平方和供電量之積成正比.比例系數(shù)為λ,若A城供電量為10億度/月,B城為20億度/月,當(dāng)x=20km時,A城的月供電費用為1000.
(1)把月供電總費用y表示成x的函數(shù),并求定義域.
(2)核電站建在距A城多遠時,才能使用供電總費用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列關(guān)系式中,成立的是( 。
A.${log_3}4>1>{log_{\frac{1}{3}}}10$B.${log_{\frac{1}{3}}}10>1>{log_3}4$
C.${log_3}4>{log_{\frac{1}{3}}}10>1$D.${log_{\frac{1}{3}}}10>{log_3}4>1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.函數(shù)f(x)=22x-(m-1)2x+2在x∈[0,2]只有一個零點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=2sinx$co{s}^{2}\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π)在x=π處取最小-1.
(1)求φ的值;若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求f(x)的單減區(qū)間;
(2)把f(x)的圖象上所有點的橫坐標縮短到原來的$\frac{1}{2}$倍(縱坐標不變),再向左平移$\frac{π}{6}$個單位得的圖象g(x),求g(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點P($\sqrt{2}$,1),離心率e=$\frac{{\sqrt{6}}}{3}$.
(1)求橢圓C的方程;
(2)已知動直線y=k(x+1)與橢圓C相交于A,B兩點,試問:在x軸上是否存在定點M,使得$\overrightarrow{MA}•\overrightarrow{MB}$的值與k的取值無關(guān)?若存在,請求出該定點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)y=2sinxcosx的最小正周期為π.

查看答案和解析>>

同步練習(xí)冊答案