分析 (Ⅰ)令a=b=1,代入計算即可求得f(1)=0;令a=b=2,求得f(4)=-2,令a=4,b=$\frac{1}{4}$,即可得到所求值;
(Ⅱ)運用單調(diào)性的定義證明,注意運用條件可得$\frac{{x}_{2}}{{x}_{1}}$>1,即有f($\frac{{x}_{2}}{{x}_{1}}$)<0;
(Ⅲ)f(log4x)>2即為f(log4x)>$f(\frac{1}{4})$,由(Ⅱ)f(x)在(0,+∞)上是減函數(shù),可得不等式組,解得即可得到所求集合.
解答 解:(Ⅰ)令a=b=1,可得2f(1)=f(1),
解得f(1)=0;
令a=b=2,可得2f(2)=f(4)=-2,
令a=4,b=$\frac{1}{4}$,可得f(4)+f($\frac{1}{4}$)=f(1)=0,
即有f($\frac{1}{4}$)=-f(4)=2;
(Ⅱ)證明:設(shè)x1,x2∈(0,+∞)且x1<x2,
可得$\frac{{x}_{2}}{{x}_{1}}$>1,即有f($\frac{{x}_{2}}{{x}_{1}}$)<0,
則f(x2)=f(x1•$\frac{{x}_{2}}{{x}_{1}}$)=f(x1)+f($\frac{{x}_{2}}{{x}_{1}}$)<f(x1),
∴f(x)在(0,+∞)上是減函數(shù);
(Ⅲ)f(log4x)>2即為
f(log4x)>$f(\frac{1}{4})$,
由(Ⅱ)f(x)在(0,+∞)上是減函數(shù)
所以$\left\{\begin{array}{l}{log_4}x<\frac{1}{4}\\{log_4}x>0\end{array}\right.$,即為$\left\{\begin{array}{l}{0<x<\sqrt{2}}\\{x>1}\end{array}\right.$,
解得$1<x<\sqrt{2}$,
故不等式的解集為(1,$\sqrt{2}$).
點評 本題考查抽象函數(shù)的運用,考查賦值法求函數(shù)值的方法和運用單調(diào)性的定義證明得到,同時考查解不等式,注意運用單調(diào)性和函數(shù)的定義域,屬于中檔題和易錯題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1組 | B. | 2組 | C. | 3組 | D. | 4組 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${log_3}4>1>{log_{\frac{1}{3}}}10$ | B. | ${log_{\frac{1}{3}}}10>1>{log_3}4$ | ||
C. | ${log_3}4>{log_{\frac{1}{3}}}10>1$ | D. | ${log_{\frac{1}{3}}}10>{log_3}4>1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com