20.如圖,三棱柱ABC-A1B1C1中,平面ABB1A1⊥底面ABC,AB=BC=CA=$\frac{1}{2}A{A_1}$,∠A1AB=120°,D、E分別是BC、A1C1的中點(diǎn).
(Ⅰ)試在棱AB上找一點(diǎn)F,使DE∥平面A1CF;
(Ⅱ)在(Ⅰ)的條件下,求二面角A-A1C-F的余弦值.

分析 (Ⅰ)連結(jié)DF,通過(guò)題意易得四邊形A1FDE是平行四邊形,利用DE∥A1F及線面平行判定定理可得結(jié)論;
(Ⅱ)通過(guò)題意可得A1B1⊥AB1,建立如圖空間直角坐標(biāo)系如圖,分別求出平面A1CF,平面A1AC的法向量,將二面角問(wèn)題轉(zhuǎn)化為向量夾角問(wèn)題,計(jì)算即可.

解答 解:(Ⅰ)F是AB的中點(diǎn),證明如下:
連結(jié)DF,又因?yàn)镈、E分別是BC、A1C1的中點(diǎn),
所以DF$\stackrel{∥}{=}$$\frac{1}{2}$AC,又AC$\stackrel{∥}{=}$A1C1,且A1E=$\frac{1}{2}$A1C1
則DF$\stackrel{∥}{=}$A1E,故四邊形A1FDE是平行四邊形,
所以DE∥A1F,又A1F?平面A1CF,DE?平面A1CF,
所以DE∥平面A1CF.
(Ⅱ)由題∠AA1B1=60°,設(shè)A1A=2,則A1B1=1,
所以$A{B_1}=\sqrt{{2^2}+{1^2}-2×2×1×cos{{60}°}}=\sqrt{3}$,
則$AB_1^2+{A_1}B_1^2={A_1}{A^2}$,所以A1B1⊥AB1
過(guò)點(diǎn)B1作平面A1B的垂線B1z,分別以$\overrightarrow{{B_1}{A_1}}$,$\overrightarrow{{B_1}A}$,$\overrightarrow{{B_1}z}$的方向?yàn)閤,y,z軸,
建立如圖空間直角坐標(biāo)系,
則有A1(1,0,0),$A(0,\sqrt{3},0)$,$C(-\frac{1}{2},\sqrt{3},\frac{{\sqrt{3}}}{2})$,$F(-\frac{1}{2},\sqrt{3},0)$,
則$\overrightarrow{{A_1}A}=(-1,\sqrt{3},0)$,$\overrightarrow{{A_1}C}=(-\frac{3}{2},\sqrt{3},\frac{{\sqrt{3}}}{2})$,$\overrightarrow{FC}=(0,0,\frac{{\sqrt{3}}}{2})$,
設(shè)平面A1CF,平面A1AC的法向量分別為m=(x1,y1,z1),n=(x2,y2,z2),
由$\left\{\begin{array}{l}m•\overrightarrow{{A_1}C}=0\\ m•\overrightarrow{FC}=0\end{array}\right.$即$\left\{\begin{array}{l}-\frac{3}{2}{x_1}+\sqrt{3}{y_1}+\frac{{\sqrt{3}}}{2}{z_1}=0\\ \frac{3}{2}{z_1}=0\end{array}\right.$,取$m=(2,\sqrt{3},0)$,
由$\left\{\begin{array}{l}n•\overrightarrow{{A_1}C}=0\\ n•\overrightarrow{{A_1}A}=0\end{array}\right.$即$\left\{\begin{array}{l}-\frac{3}{2}{x_2}+\sqrt{3}{y_2}+\frac{{\sqrt{3}}}{2}{z_2}=0\\-{x_2}+\sqrt{3}{y_2}=0\end{array}\right.$,取$n=(\sqrt{3},1,1)$,
所以$cos\left?{m•n}\right>=\frac{m•n}{|m|•|n|}=\frac{{3\sqrt{3}}}{{\sqrt{7}×\sqrt{5}}}=\frac{{3\sqrt{105}}}{35}$,
所以二面角A-A1C-F的余弦值為$\frac{{3\sqrt{105}}}{35}$.

點(diǎn)評(píng) 本題考查中位線定理,線面平行的判定定理,向量數(shù)量積運(yùn)算,注意解題方法的積累,建立坐標(biāo)系是解決本題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖1是圖2的三視圖,三棱錐B-ACD中,E,F(xiàn)分別是棱AB,AC的中點(diǎn),△ABC的中線CE,BF交于點(diǎn)M.
(Ⅰ)證明:BD⊥AC;
(Ⅱ)求三棱錐A-DEF的體積;
(Ⅲ)在線段BD上是否存在一點(diǎn)P,使得DF∥平面CPE,若存在,求$\frac{BP}{DP}$的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.把兩條直線的位置關(guān)系填入結(jié)構(gòu)圖中的M、N、E、F中,順序較為恰好的是(  )
①平行②垂直③相交④斜交.
A.①③②④B.①②③④C.①④②③D.②①④③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{sinx+\sqrt{3}cosx,0≤x≤π}\\{|co{s}^{2}x-si{n}^{2}x|,-π≤x<0}\end{array}\right.$.
(1)求函數(shù)f(x)的值域與單調(diào)遞增區(qū)間;
(2)若函數(shù)g(x)=f(x)-m至少有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)f′(x)為f(x)的導(dǎo)函數(shù),f″(x)是f′(x)的導(dǎo)函數(shù),如果f(x)同時(shí)滿足下列條件:①存在x0,使f″(x0)=0;②存在ε>0,使f′(x)在區(qū)間(x0-ε,x0)單調(diào)遞增,在區(qū)間(x0,x0+ε)單調(diào)遞減.則稱x0為f(x)的“上趨拐點(diǎn)”;
如果f(x)同時(shí)滿足下列條件:①存在x0,使f″(x0)=0;②存在ε>0,使f′(x)在區(qū)間(x0-ε,x0)單調(diào)遞減,在區(qū)間(x0,x0+ε)單調(diào)遞增.則稱x0為f(x)的“下趨拐點(diǎn)”.
給出以下命題,其中正確的是①③④(只寫出正確結(jié)論的序號(hào))
①0為f(x)=x3的“下趨拐點(diǎn)”;
②f(x)=x2+ex在定義域內(nèi)存在“上趨拐點(diǎn)”;
③f(x)=ex-ax2在(1,+∞)上存在“下趨拐點(diǎn)”,則a的取值范圍為($\frac{e}{2}$,+∞);
④f(x)=$\frac{1}{3}a{x^3}-\frac{1}{2}a(a-1){x^2}-{a^2}x+1$,若a為f(x)的“上趨拐點(diǎn)”,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知a,b,c>0,求證:$\sqrt{\frac{a}{b+c}}$+$\sqrt{\frac{c+a}}$+$\sqrt{\frac{c}{a+b}}$>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在正方體ABCD-A1B1C1D1中,E為棱CC1的中點(diǎn)
(Ⅰ)求證:平面A1ED⊥平面EBD;
(Ⅱ)求二面角A1-DE-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.要將甲、乙兩種大小不同的鋼板截成A、B兩種規(guī)格,每張鋼板可同時(shí)截得A、B兩種規(guī)格的小鋼板的塊數(shù)如表所示:
已知庫(kù)房中現(xiàn)有甲乙兩種鋼板的數(shù)量分別為5張和10張,市場(chǎng)急需A、B兩種規(guī)格的成品數(shù)分別為15塊和27塊.
規(guī)格類型
鋼板類型
AB
21
13
(1)問(wèn)各截兩種鋼板多少?gòu)埧傻玫剿璧某善窋?shù),且使所用的兩種鋼板的總張數(shù)最少?
(2)有5個(gè)同學(xué)對(duì)線性規(guī)劃知識(shí)了解不多,但是畫出了可行域,他們每個(gè)人都在可行域的整點(diǎn)中隨意取出一解,求恰好有2個(gè)人取到最優(yōu)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)平面向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=(cosx+2$\sqrt{3}$,sinx),$\overrightarrow{c}$=(sinα,cosα),x∈R.
(1)若$\overrightarrow{a}⊥\overrightarrow{c}$,求cos(2x+2α)的值;
(2)若α=0,求函數(shù)f(x)=$\overrightarrow{a}•(\overrightarrow-2\overrightarrow{c})$的最大值,并求出相應(yīng)的x值.

查看答案和解析>>

同步練習(xí)冊(cè)答案