分析 根據(jù)“牛頓調(diào)和三角形”的特征,每個數(shù)是它下一個行左右相鄰兩數(shù)的和,得出將楊暉三角形中的每一個數(shù)Cnr都換成分數(shù)$\frac{1}{(n+1){C}_{n}^{r}}$,就得到一個萊布尼茲三角形,從而可求出第n(n≥3)行第3個數(shù)字,第6行第2個數(shù).
解答 解:將楊暉三角形中的每一個數(shù)Cnr都換成分數(shù)$\frac{1}{(n+1){C}_{n}^{r}}$,
就得到牛頓調(diào)和三角形.
∵楊暉三角形中第n(n≥3)行第3個數(shù)字是Cn-12,
則“萊布尼茲調(diào)和三角形”第n(n≥3)行第3個數(shù)字是$\frac{1}{n{C}_{n-1}^{2}}$=$\frac{2}{n(n-1)(n-2)}$,
第6行第2個數(shù)$\frac{1}{6×5}$=$\frac{1}{30}$,
故答案為:$\frac{1}{30},\frac{2}{n(n-1)(n-2)}$
點評 本題考查歸納推理,解題的關(guān)鍵是通過觀察分析歸納各數(shù)的關(guān)系,考查學(xué)生的觀察分析和歸納能力,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+4$\sqrt{2}$ | B. | 2+2$\sqrt{2}$ | C. | 4+$\sqrt{2}$ | D. | 4+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{3}$,$\frac{π}{2}$) | B. | (0,$\frac{π}{3}$) | C. | ($\frac{π}{6}$,$\frac{π}{2}$) | D. | (0,$\frac{π}{6}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?n∈N,n2≤2n | B. | ?n∈N,n2<2n | C. | ?n∈N,n2≤2n | D. | ?n∈N,n2<2n |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com