1.已知A,B是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個(gè)頂點(diǎn),若P雙曲線上一點(diǎn),P關(guān)于x軸對稱點(diǎn)為Q,若直線AP,BQ的斜率分別K1,K2且K1K2=-$\frac{4}{9}$,則該雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{3}$C.$\frac{\sqrt{13}}{2}$D.$\frac{\sqrt{13}}{3}$

分析 設(shè)P(x,y),則Q(x,-y),利用A(-a,0),B(a,0),直線AP,BQ的斜率分別K1,K2且K1K2=-$\frac{4}{9}$,建立方程,結(jié)合雙曲線的定義,求出$\frac{^{2}}{{a}^{2}}$=$\frac{4}{9}$,即可求出雙曲線的離心率.

解答 解:設(shè)P(x,y),則Q(x,-y),
∵A(-a,0),B(a,0),直線AP,BQ的斜率分別K1,K2且K1K2=-$\frac{4}{9}$,
∴$\frac{y}{x+a}$•$\frac{-y}{x-a}$=-$\frac{4}{9}$,
∴$\frac{^{2}}{{a}^{2}}$=$\frac{4}{9}$,
∴e=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=$\frac{\sqrt{13}}{3}$.
故選:D.

點(diǎn)評 本題主要考查雙曲線的幾何性質(zhì),考查學(xué)生的計(jì)算能力,正確運(yùn)用雙曲線的方程是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.cos40°cos160°+sin40°sin20°=( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知直線x-y+3=0與圓O:x2+y2=r2(r>0)相交于M,N兩點(diǎn),若$\overrightarrow{OM}•\overrightarrow{ON}=3$,則圓的半徑r=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=x|x-2|,則不等式$f({\sqrt{2}-x})<f(1)$的解集為(-1,$\sqrt{2}$-1)∪($\sqrt{2}$-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|x-2|+|x-10|,且滿足f(x)<8a(a∈R)的解集不是空集,
(1)求實(shí)數(shù)a的取值范圍;
(2)求a+$\frac{4}{{a}^{2}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)一光線經(jīng)點(diǎn)P(5,3)被直線l:y=3x+3反射,若反射光線經(jīng)過點(diǎn)Q(1,1),求入射光線所在直線方程.
(2)已知正方形ABCD一邊AB的方程 x+2y+3=0和中心P(1,1),求邊BC和AD的方程.
(3)已知橢圓$\frac{x^2}{{3{m^2}}}+\frac{y^2}{{5{n^2}}}=1$和雙曲線$\frac{x^2}{{2{m^2}}}-\frac{y^2}{{3{n^2}}}=1$有公共的焦點(diǎn),那么雙曲線的漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知空間幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.曲線y=e-x+1在點(diǎn)(0,2)處的切線方程為x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,將直線l沿x軸正方向平移3個(gè)單位,沿y軸正方向平移5個(gè)單位,得到直線l1.再將直線l1沿x軸正方向平移1個(gè)單位,沿y軸負(fù)方向平移2個(gè)單位,又與直線l重合.若直線l與直線l1關(guān)于點(diǎn)(2,3)對稱,則直線l的方程是6x-8y+1=0.

查看答案和解析>>

同步練習(xí)冊答案