18.若點(diǎn)O和點(diǎn)F分別為橢圓3x2+4y2=12的中心和左焦點(diǎn),點(diǎn)P為橢圓上任意一點(diǎn),則$\overrightarrow{OP}•\overrightarrow{FP}$最大值為6.

分析 設(shè)P(x,y),由數(shù)量積運(yùn)算及點(diǎn)P在橢圓上可把$\overrightarrow{OP}•\overrightarrow{FP}$表示為x的二次函數(shù),根據(jù)二次函數(shù)性質(zhì)可求其最大值.

解答 解:設(shè)P(x,y),
則$\overrightarrow{OP}•\overrightarrow{FP}$=(x,y)•(x+1,y)=x2+x+y2,
又點(diǎn)P在橢圓上,故3x2+4y2=12,
所以x2+x+(3-$\frac{3}{4}$x2)=$\frac{1}{4}$x2+x+3=$\frac{1}{4}$(x+2)2+2,
又-2≤x≤2,
所以當(dāng)x=2時(shí),$\frac{1}{4}$(x+2)2+2取得最大值為6,即$\overrightarrow{OP}•\overrightarrow{FP}$的最大值為6,
故答案為:6.

點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算、橢圓的簡(jiǎn)單性質(zhì),屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={1,a2},B={1,2,a},若A⊆B,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=x|x-2|,則不等式$f({\sqrt{2}-x})<f(1)$的解集為(-1,$\sqrt{2}$-1)∪($\sqrt{2}$-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)一光線經(jīng)點(diǎn)P(5,3)被直線l:y=3x+3反射,若反射光線經(jīng)過點(diǎn)Q(1,1),求入射光線所在直線方程.
(2)已知正方形ABCD一邊AB的方程 x+2y+3=0和中心P(1,1),求邊BC和AD的方程.
(3)已知橢圓$\frac{x^2}{{3{m^2}}}+\frac{y^2}{{5{n^2}}}=1$和雙曲線$\frac{x^2}{{2{m^2}}}-\frac{y^2}{{3{n^2}}}=1$有公共的焦點(diǎn),那么雙曲線的漸近線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知空間幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖的正方形O′A′B′C′的邊長(zhǎng)為1cm,它是水平放置的一個(gè)平面圖形的直觀圖,則原圖形的面積為(  )
A.2$\sqrt{2}$cm2B.1cm2C.4$\sqrt{2}$cm2D.$\frac{\sqrt{2}}{4}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.曲線y=e-x+1在點(diǎn)(0,2)處的切線方程為x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對(duì)于集合A、B,“A≠B”是“A∩B?A∪B”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個(gè)彈性小球從10米自由落下,著地后反彈到原來高度的$\frac{4}{5}$處,再自由落下,又彈回到上一次高度的$\frac{4}{5}$處,假設(shè)這個(gè)小球能無限次反彈,則這個(gè)小球在這次運(yùn)動(dòng)中所經(jīng)過的總路程為( 。
A.50B.80C.90D.100

查看答案和解析>>

同步練習(xí)冊(cè)答案