17.如圖程序框圖表示的算法是:求1+2+3+4+…+n>20時(shí)n的最小值,則輸出框中應(yīng)填( 。
A.iB.i+1C.i-1D.n

分析 分析題目中的要求,發(fā)現(xiàn)這是一個(gè)累加型的問題,用循環(huán)結(jié)構(gòu)來實(shí)現(xiàn),累加的初始值為0,累加值每一次增加i,退出循環(huán)的條件是累加結(jié)果S>20,把握住以上要點(diǎn)不難得到正確的輸出框內(nèi)的內(nèi)容.

解答 解:考察程序框圖中條件結(jié)構(gòu),循環(huán)結(jié)構(gòu),循環(huán)次數(shù)計(jì)數(shù)問題,
當(dāng)S=1+2+3+…+5=15時(shí),滿足S≤20,進(jìn)入循環(huán),
S=1+2+3+…+6=21,i=6,不滿足條件S≤20,退出循環(huán),
應(yīng)該輸出i-1的值,即5.
故選:C.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu),以及利用循環(huán)語句來實(shí)現(xiàn)數(shù)值的累加(乘),同時(shí)考查了流程圖的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在等差數(shù)列{an}中,其前n項(xiàng)和記為Sn,
(1)若S101=0,則a51=0;
(2)若6S5-5S3=5,則a4=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在直角梯形ABCD中,∠BAD=∠ADC=90°,CD=DA=a,AB=2a,SA⊥平面ABCD,且SA=a
(1)求證:△SAD,△SAB,△SCB,△SDC都是直角三角形;
(2)在SD上取點(diǎn)M,SC交平面ABM于N,求證;四邊形ABNM為直角梯形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)是定義在R上的奇函數(shù),當(dāng)X≥0時(shí),f(x)=2x-1.
(1)求當(dāng)x<0時(shí),f(x)的解析式;
(2)若f(x)≤5,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知直線2x-y-2=0與x、y軸分別交A、B兩點(diǎn),點(diǎn)P在拋物線y=4x2上,試求△PAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)集合A={x∈N|-1<x<3},B={2},B⊆M⊆A,則滿足條件的集合M的個(gè)數(shù)4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知拋物線y2=4x的過焦點(diǎn)的弦AB被焦點(diǎn)分成長(zhǎng)為d1、d2的兩段,那么( 。
A.d1+d2=d1•d2B.d1-d2=d1•d2C.d12+d22=d1•d2D.d12-d22=d1•d2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若f(x)=ax3+ax+2(a≠0)在[-6,6]上滿足f(-6)>1,f(6)<1,則方程f(x)=1在[-6,6]內(nèi)的解的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.閱讀如圖所示的程序框圖,若輸入a=$\frac{9}{19}$,則輸出的k值是( 。
A.9B.10C.11D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案