17.若函數(shù)f(x)=x2+2ax+2在(-∞,-4]上單調(diào)遞減,那么實(shí)數(shù)a的取值范圍是( 。
A.a≤-4B.a≥-4C.a≤4D.a≥4

分析 先分析二次函數(shù)的圖象的開口方向和對稱軸,進(jìn)而根據(jù)函數(shù)f(x)=x2+2ax+2在(-∞,-4]上單調(diào)遞減,可得-4≤-a,解得答案.

解答 解:∵函數(shù)f(x)=x2+2ax+2的圖象是開口朝上,且以直線x=-a為對稱軸的拋物線,
若函數(shù)f(x)=x2+2ax+2在(-∞,-4]上單調(diào)遞減,
則-4≤-a,
解得:a≤4,
故選:C.

點(diǎn)評 本題考查的知識點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì),是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,一船自西向東勻速行駛,上午9時(shí)到達(dá)距離燈塔P為68海里的M處,在M處看燈塔P在船的北偏東75°方向,上午11時(shí)航行到N處,在N處看燈塔P在船的北偏西45°方向,則這艘船的航行速度為(  )
A.17$\sqrt{6}$海里/小時(shí)B.68$\sqrt{6}$海里/小時(shí)C.17$\sqrt{2}$海里/小時(shí)D.68$\sqrt{2}$海里/小時(shí)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3,PB=1,PC=9.設(shè)M是底面ABC內(nèi)一點(diǎn),定義f(M)=(m、n、p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積,若f(M)=($\frac{1}{2}$,x,y),且$\frac{{x}^{2}}{2}$+y2≥a恒成立,則正實(shí)數(shù)a的最大值為( 。
A.$\frac{4}{3}$B.$\frac{16}{3}$C.$\frac{8}{3}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四組函數(shù)中,為同一函數(shù)的一組是( 。
A.f(x)=1與g(x)=x0B.f(x)=$\sqrt{x^2}$與g(x)=x
C.f(x)=|-x|與g(x)=$\left\{\begin{array}{l}{x}&{x≥0}\\{-x}&{x<0}\end{array}\right.$D.f(x)=$\frac{{{x^2}-1}}{x-1}$與g(x)=x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線x+2y=1與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1相交于A、B兩點(diǎn),AB中點(diǎn)為M,若直線AB斜率與OM斜率之積為-$\frac{1}{4}$.則橢圓的離心率e的值是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知直線m:(a-1)x-y+2=0,n:ax-(a-1)y+1=0互相垂直,則a的值是±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.三個(gè)實(shí)數(shù)a,b,c成等比數(shù)列,且a+b+c=3,則b的取值范圍是( 。
A.[-1,0)B.(0,1]C.[-1,0)∪(0,3]D.[-3,0)∪(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在數(shù)列{an}中,已知a1+a2+…+an=2n-1,則an=2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.求值:${(lg2)^2}+lg5•lg20+{(\sqrt{2014}-2)^0}+{0.064^{-\frac{2}{3}}}×{(\frac{1}{4})^{-2}}$=102.

查看答案和解析>>

同步練習(xí)冊答案