12.直線x+2y=1與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1相交于A、B兩點,AB中點為M,若直線AB斜率與OM斜率之積為-$\frac{1}{4}$.則橢圓的離心率e的值是$\frac{\sqrt{3}}{2}$.

分析 設出A,B的坐標,聯(lián)立直線方程與橢圓方程,利用根與系數(shù)的關系結合中點坐標公式求出kOM,再由直線AB斜率與OM斜率之積為-$\frac{1}{4}$,求得答案.

解答 解:設A、B兩點的坐標分別為A(x1,y1),B(x2,y2),
聯(lián)立$\left\{\begin{array}{l}{x+2y=1}\\{^{2}{x}^{2}+{a}^{2}{y}^{2}={a}^{2}^{2}}\end{array}\right.$,得(a2+4b2)x2-2a2x+a2-4a2b=0.
∴x1+x2=$\frac{2{a}^{2}}{{a}^{2}+4^{2}}$,y1+y2=$\frac{1}{2}$(2-x1-x2)=1-$\frac{{a}^{2}}{{a}^{2}+4^{2}}$=$\frac{4^{2}}{{a}^{2}+4^{2}}$,
∴kOM=$\frac{{2b}^{2}}{{a}^{2}}$,又kAB=-$\frac{1}{2}$,
∴$\frac{{2b}^{2}}{{a}^{2}}$•(-$\frac{1}{2}$)=-$\frac{1}{4}$,即a2=4b2=4(a2-c2),即3a2=4c2
解得:e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$.
另解:設A、B兩點的坐標分別為A(x1,y1),B(x2,y2),
AB中點為M(x0,y0),
由$\frac{{{x}_{1}}^{2}}{{a}^{2}}$+$\frac{{{y}_{1}}^{2}}{^{2}}$=1,$\frac{{{x}_{2}}^{2}}{{a}^{2}}$+$\frac{{{y}_{2}}^{2}}{^{2}}$=1,
兩式相減可得,$\frac{({x}_{1}-{x}_{2})({x}_{1}+{x}_{2})}{{a}^{2}}$+$\frac{({y}_{1}-{y}_{2})({y}_{1}+{y}_{2})}{^{2}}$=0,
由x0=$\frac{1}{2}$(x1+x2),y0=$\frac{1}{2}$(y1+y2),
kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$,kOM=$\frac{{y}_{0}}{{x}_{0}}$,
可得kAB•kOM=-$\frac{^{2}}{{a}^{2}}$=-$\frac{1}{4}$,
即a2=4b2=4(a2-c2),即3a2=4c2
解得:e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點評 本題考查橢圓的簡單性質(zhì),考查直線與橢圓的位置關系的應用,考查計算能力,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知直線l1經(jīng)過點A(3,2),B(0,-1),若直線l2:2x+ay+1=0與直線l1平行,則a=(  )
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知二次函數(shù)y=f(x)的圖象經(jīng)過坐標原點,其導函數(shù)為f′(x)=6x-2.數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設${b_n}=\frac{3}{{{a_n}{a_{n+1}}}}$,Tn是數(shù)列{bn}的前n項和,求使得${T_n}<\frac{m}{2016}$對所有的(n∈N*)都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(1)求值:0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$+2log36-log312
(2)化簡:$\frac{{tan(π+a)cos(2π+a)sin(a-\frac{3π}{2})}}{cos(-a-3π)sin(-3π-a)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.集合P={x|x2-3x+2=0},Q={x|mx-1=0},若P?Q,則實數(shù)m的值是{0,$\frac{1}{2}$,1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若函數(shù)f(x)=x2+2ax+2在(-∞,-4]上單調(diào)遞減,那么實數(shù)a的取值范圍是( 。
A.a≤-4B.a≥-4C.a≤4D.a≥4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知△ABC的頂點A(1,3),M(2,2)是AB的中點,BC邊上的高AD所在直線方程為4x+y-7=0,AC邊上的高BE所在直線方程為2x+3y-9=0.
求:(1)求頂點B的坐標及邊BC所在的直線方程;
(2)求AB邊上的中線CM所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x(x∈R),且f(0)=1,
(1)求f(x)的解析式;
(2)當x∈[-1,1]時,求函數(shù)g(x)=f(x)-2x的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若函數(shù)y=2x3-mx+1在區(qū)間[1,2]上單調(diào),則實數(shù)m的取值范圍為(-∞,6]∪[24,+∞).

查看答案和解析>>

同步練習冊答案