2.進(jìn)入高中后,我們將學(xué)習(xí)到-種新的數(shù)叫復(fù)數(shù),已知虛數(shù)單位i滿足i2=-1,由此得i3=-i,i4=1,i5=i4.i=i…,則(l+i)2012=-21006

分析 由(1+i)2012=[(1+i)2]1006=(2i)1006,然后利用虛數(shù)單位i的運(yùn)算性質(zhì)求解.

解答 解:(l+i)2012=[(1+i)2]1006=(2i)1006=21006•(i2503=-21006
故答案為:-21006

點(diǎn)評(píng) 本題考查虛數(shù)單位i的運(yùn)算性質(zhì),是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知n=${∫}_{1}^{e}\frac{6}{x}$dx,那么${({x^2}-\frac{1}{x})^n}$的展開(kāi)式中的常數(shù)項(xiàng)為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.二項(xiàng)式($\root{3}{{x}^{2}}$+$\frac{2}{\sqrt{{x}^{3}}}$)12展開(kāi)式的中間一項(xiàng)為29568x-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.求值:sin78°-sin66°-sin42°+sin6°=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求tan40°+tan80°-$\sqrt{3}$tan40°tan80°的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)I={x|x2≤50,x∈N},M∩L={2,3},$\overline{M}$∩L={1,6},$\overline{M}$∩$\overline{L}$={5},求M和L.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)直線l1:ax+4y-2=0與l2:x+ay-b=0平行,求實(shí)數(shù)a與b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.化簡(jiǎn)多項(xiàng)式:(2x+1)5-5(2x+1)4+10(2x+1)3-10(2x+1)2+5(2x+1)-1的結(jié)果是32x5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.(x+2)(x-$\frac{1}{x}$)6的展開(kāi)式中,常數(shù)項(xiàng)是-40(用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊(cè)答案