16.已知集合A={α|α小于90°},B={α|α為第一象限角},則A∩B={α|小于90°且在第一象限的角}.

分析 根據(jù)交集的定義即可求出.

解答 解:∵集合A={α|α小于90°},B={α|α為第一象限角},
∴A∩B={α|小于90°且在第一象限的角},
故答案為:{α|小于90°且在第一象限的角},

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x)=|x-a|+|2x-a|,a<0.
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)若不等式f(x)<$\frac{1}{2}$的解集非空,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$\sqrt{2+\frac{2}{3}}$=$2\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,$\sqrt{5+\frac{5}{24}}=5\sqrt{\frac{5}{24}}$…,類(lèi)比推理得$\sqrt{m+\frac{n}{t}}$=m$\sqrt{\frac{n}{t}}$(m>0,n>0,t>0),則t+$\frac{16}{n}$+2005的最小值等于2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.(1)如圖(1)所示,在北緯30°圈上兩地A,B的經(jīng)度差為銳角θ,若sinθ=$\frac{2\sqrt{2}}{3}$,求A,B兩地間的球面距離(地球半徑為R).
(2)如圖(2)所示,三條側(cè)棱兩兩垂直且長(zhǎng)都為1的正三棱錐P-ABC內(nèi)接于球O,求球O的表面積與體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.函數(shù)f(x)=$\frac{\sqrt{1-|x-1|}}{x-1}$的定義域?yàn)閇0,1)∪(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.集合A={x|0<x≤3,x∈Z}的真子集的個(gè)數(shù)是( 。
A.8B.7C.6D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)P(1,-2),則函數(shù)y=-f(-x)的圖象必過(guò)點(diǎn)( 。
A.(-1,2)B.(1,2)C.(-1,-2)D.(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,在△ABC中,∠ACB=90°,AC=2,BC=1,點(diǎn)A、C分別在x軸、y軸上,當(dāng)點(diǎn)A在x軸上運(yùn)動(dòng)時(shí),點(diǎn)C隨之在y軸上運(yùn)動(dòng),在運(yùn)動(dòng)過(guò)程中,點(diǎn)B到原點(diǎn)O的最大距離是( 。
A.3B.$\sqrt{6}$C.$1+\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖是甲、乙兩名籃球運(yùn)動(dòng)員2013年賽季每場(chǎng)比賽得分的莖葉圖,則甲中位數(shù)和乙的平均數(shù)之和為$\frac{381}{7}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案