【題目】已知2件次品和3件正品放在一起,現(xiàn)需要通過(guò)檢測(cè)將其區(qū)分,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)檢測(cè)結(jié)果.

1求第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率;

2已知每檢測(cè)一件產(chǎn)品需要費(fèi)用100元,設(shè)X表示直到檢測(cè)出2件次品或者檢測(cè)出3件正品時(shí)所需要的檢測(cè)費(fèi)用(單位:元),求X的分布列.

【答案】(1);(2)見(jiàn)解析.

【解析】試題分析:

(1)由古典概型公式可得第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品的概率是;

(2)由題意可知X的可能取值為200300,400,據(jù)此求解分布列即可.

試題解析:

(1)第一次檢測(cè)出的是次品且第二次檢測(cè)出的是正品為事件A,

P(A).

(2)X的可能取值為200,300,400.

P(X200),

P(X300),

P(X400)1P(X200)P(X300)1.

所以,X的分布列為:

X

200

300

400

P

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次考試中,語(yǔ)文成績(jī)服從正態(tài)分布,數(shù)學(xué)成績(jī)的頻率分布直方圖如下:

(Ⅰ)如果成績(jī)大于135的為特別優(yōu)秀,隨機(jī)抽取的500名學(xué)生在本次考試中語(yǔ)文、數(shù)學(xué)成績(jī)特別優(yōu)秀的大約各多少人?(假設(shè)數(shù)學(xué)成績(jī)?cè)陬l率分布直方圖中各段是均勻分布的)

(Ⅱ)如果語(yǔ)文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(Ⅰ)中至少有一科成績(jī)特別優(yōu)秀的同學(xué)中隨機(jī)抽取3人,設(shè)3人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望;

(Ⅲ)根據(jù)以上數(shù)據(jù),是否有99%的把握認(rèn)為語(yǔ)文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.

(附公及表)

①若,則, ;

, ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測(cè)量產(chǎn)品中微量元素,的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):

當(dāng)產(chǎn)品中的微量元素滿足時(shí),該產(chǎn)品為優(yōu)等品

(1)若甲廠生產(chǎn)的產(chǎn)品共98件,用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量;

(2)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合.對(duì)于, ,定義之間的距離為

(Ⅰ)寫(xiě)出中的所有元素,并求兩元素間的距離的最大值;

(Ⅱ)若集合滿足: ,且任意兩元素間的距離均為2,求集合中元素個(gè)數(shù)的最大值并寫(xiě)出此時(shí)的集合;

(Ⅲ)設(shè)集合, 中有個(gè)元素,記中所有兩元素間的距離的平均值為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)的單調(diào)性并證明;

3)若對(duì)任意的,不等式恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),且離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓交于兩點(diǎn),以為對(duì)角線作正方形,記直線軸的交點(diǎn)為,問(wèn)、兩點(diǎn)間距離是否為定值?如果是,求出定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)滿足

1)求函數(shù)的解析式;

2)若函數(shù),是否存在實(shí)數(shù)使得的最小值為0?若存在,求出的值;若不存在,說(shuō)明理由;

3)若函數(shù),是否存在實(shí)數(shù),使函數(shù)上的值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某校組織的“共筑中國(guó)夢(mèng)”競(jìng)賽活動(dòng)中,甲、乙兩班各有6名選手參賽,在第一輪筆試環(huán)節(jié)中,評(píng)委將他們的筆試成績(jī)作為樣本數(shù)據(jù),繪制成如圖所示的莖葉圖,為了增加結(jié)果的神秘感,主持人故意沒(méi)有給出甲、乙兩班最后一位選手的成績(jī),只是告知大家,如果某位選手的成績(jī)高于90分(不含90分),則直接“晉級(jí)”.

(1)求乙班總分超過(guò)甲班的概率;

(2)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分,

請(qǐng)你從平均分和方差的角度來(lái)分析兩個(gè)班的選手的情況;

主持人從甲乙兩班所有選手成績(jī)中分別隨機(jī)抽取2個(gè),記抽取到“晉級(jí)”選手的總?cè)藬?shù)為,求的分

布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】女共名同學(xué)從左至右排成一排合影,要求左端排男同學(xué),右端排女同學(xué),且女同學(xué)至多有人排在一起,則不同的排法種數(shù)為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案