3.若不等式3sin2x-cos2x+4cosx+a≥-4對(duì)一切x都成立,則實(shí)數(shù)a的取值范圍為(  )
A.(1,+∞)B.(-1,+∞)C.[1,+∞)D.[-1,+∞)

分析 問題轉(zhuǎn)化為不等式a≥-3sin2x+cos2x-4cosx-4對(duì)一切x都成立,由二次函數(shù)區(qū)間的最值可得.

解答 解:∵不等式3sin2x-cos2x+4cosx+a≥-4對(duì)一切x都成立,
∴不等式a≥-3sin2x+cos2x-4cosx-4對(duì)一切x都成立,
故只需求函數(shù)y=-3sin2x+cos2x-4cosx-4的最大值即可,
變形可得y=-3(1-cos2x)+cos2x-4cosx-4
=4cos2x-4cosx-7=(2cosx-1)2-8,
由cosx∈[-1,1]和二次函數(shù)可得當(dāng)cosx=-1時(shí),
y取最大值1,故a≥1,
故選:C.

點(diǎn)評(píng) 本題考查三角函數(shù)的最值,涉及恒成立和二次函數(shù)區(qū)間的最值,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直線l:x+y=b交拋物線C:y2=2px(b>p>0)于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),且$\overrightarrow{OA}•\overrightarrow{OB}$=8,C的焦點(diǎn)F到直線1的距離為$\frac{7\sqrt{2}}{4}$.
(1)求拋物線C的方程;
(2)求△OAB外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\overrightarrow{a}$≠$\overrightarrow{e}$,|$\overrightarrow{e}$|=1,若|$\overrightarrow{a}$-t$\overrightarrow{e}$|≥|$\overrightarrow{a}$-$\overrightarrow{e}$|對(duì)t∈R恒成立,則向量$\overrightarrow{e}$與向量$\overrightarrow{a}$-$\overrightarrow{e}$的夾角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若關(guān)于直線y=k(x一1)對(duì)稱的兩點(diǎn)M,N均在圓C:(x+3)2+(y-4)2=16上,且直線MN與圓x2+y2=2相切,則直線MN的方程是y=x±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求函數(shù)y=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的單調(diào)遞增區(qū)間和單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知0<x<$\frac{3}{2}$,則y=$\frac{2}{x}$+$\frac{9}{3-2x}$的最小值為25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求函數(shù)y=$\sqrt{lo{g}_{3}[lo{g}_{\frac{1}{3}}(lo{g}_{2}x]}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義在(0,$\frac{π}{2}$)上的函數(shù)f(x),f′(x)是它的導(dǎo)函數(shù),且恒有f(x)>f′(x)tanx成立,則( 。
A.$\sqrt{3}f({\frac{π}{4}})>\sqrt{2}f({\frac{π}{3}})$B.$f(1)>2f(\frac{π}{6})sin1$C.$\sqrt{2}f({\frac{π}{6}})<f({\frac{π}{4}})$D.$\sqrt{3}f({\frac{π}{6}})<f({\frac{π}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知點(diǎn)P(2,1).
(1)求過P點(diǎn)與原點(diǎn)距離為2的直線l的方程;
(2)求過P點(diǎn)與原點(diǎn)距離最大的直線l的方程,最大距離是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案