8.已知數(shù)列{an}的通項(xiàng)公式為an=-2n2+21n,則該數(shù)列中的數(shù)值最大的項(xiàng)是( 。
A.第5項(xiàng)B.第6項(xiàng)C.第4項(xiàng)或第5項(xiàng)D.第5項(xiàng)或第6項(xiàng)

分析 利用二次函數(shù)的單調(diào)性即可得出.

解答 解:∵數(shù)列{an}的通項(xiàng)公式an=-2n2+21n=-2(n-$\frac{21}{4}$)2+$\frac{441}{8}$
∴當(dāng)n=5時(shí),an取得最大值.
故該數(shù)列第5項(xiàng)最大,
故選:A.

點(diǎn)評(píng) 本題考查了二次函數(shù)的單調(diào)性、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.f(x)=3sin(-$\frac{1}{5}$x+$\frac{3π}{10}$),若實(shí)數(shù)m滿足f($\sqrt{-{m}^{2}+2m+3}$)>f($\sqrt{-{m}^{2}+4}$),則m的取值范圍是[-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=2$\sqrt{x-1}$-x+2的值域是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{x(x-2),x≤0}\\{-ax(x+2),x>0}\end{array}\right.$是一個(gè)奇函數(shù),則滿足f(2-x2)+f(x)<0的x的取值范圍是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)頂點(diǎn)為A,虛軸的一個(gè)端點(diǎn)為B,若直線AB與該雙曲線的一條漸近線垂直,則雙曲線C的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知如圖底面ABC為直角三角形,∠C=90°,PA⊥平面ABC,求證:平面PBC⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知命題p:函數(shù)f(x)=$\frac{k-{3}^{x}}{1+k•{3}^{x}}$是奇函數(shù)的充分必要條件為k=1;命題q:曲線x2+y2=1圍成的面積大于π.下列是真命題的是( 。
A.p∧qB.(¬p)∧(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)y=f(x),x∈[a,b],函數(shù)g(x)=kx+t,記h(x)=|f(x)-g(x)|.把函數(shù)h(x)的最大值L稱為函數(shù)f(x)的“線性擬合度”.
(1)設(shè)函數(shù)f(x)=$\frac{2}{x}$,x∈[1,4],g(x)=-x+2,求此時(shí)函數(shù)f(x)的“線性擬合度”L;
(2)若函數(shù)y=f(x),x∈[a,b]的值域?yàn)閇m,n](m<n),g(x)=t,求證:L≥$\frac{n-m}{2}$;
(3)設(shè)f(x)=2$\sqrt{x}$,x∈[1,4],求k的值,使得函數(shù)f(x)的“線性擬合度”L最小,并求出L的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.集合A={y|y=2k-1,k∈Z},集合B={y|y=4k-1,k∈Z},則A∩B=( 。
A.{y|y=2k+1,k∈Z}B.{y|y=4k+1,k∈Z}C.{y|y=4k-1,k∈Z}D.{y|y=2k-1,k∈Z}

查看答案和解析>>

同步練習(xí)冊(cè)答案