分析 (1)在△AMN中,利用余弦定理得到MN;
(2)設(shè)∠PMN=α,得到∠PNM=120°-α,利用正弦定理將PM+PN用α表示,結(jié)合三角函數(shù)的有界性求最值.
解答 解:(1)在△AMN中,由余弦定理得,MN2=AM2+AN2-2AM•ANcos120°…(2分)
=${2^2}+{2^2}-2×2×2×(-\frac{1}{2})=12$,
所以$MN=2\sqrt{3}$千米. …(4分)
(2)設(shè)∠PMN=α,因?yàn)椤螹PN=60°,所以∠PNM=120°-α
在△PMN中,由正弦定理得,$\frac{MN}{sin∠MPN}=\frac{PM}{{sin({{120}^0}-α)}}=\frac{PN}{sinα}$.…(6分)
因?yàn)?\frac{MN}{sin∠MPN}$=$\frac{{2\sqrt{3}}}{{sin{{60}^0}}}=4$,
所以PM=4sin(1200-α),PN=4sinα…(8分)
因此PM+PN=4sin(1200-α)+4sinα…(10分)
=$4(\frac{{\sqrt{3}}}{2}cosα+\frac{1}{2}sinα)+4sinα$
=$6sinα+2\sqrt{3}cosα$=$4\sqrt{3}sin(α+{30^0})$…(13分)
因?yàn)?°<α<120°,所以30°<α+30°<150°.
所以當(dāng)α+300=900,即α=600時(shí),PM+PN取到最大值$4\sqrt{3}$.…(15分)
答:兩條觀光線路距離之和的最大值為$4\sqrt{3}$千米.…(16分)
點(diǎn)評(píng) 本題考查了解三角形的實(shí)際應(yīng)用;關(guān)鍵是正確建模,然后利用正弦定理、余弦定理解三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2-$\sqrt{3}$ | B. | 2$\sqrt{3}$+3 | C. | 2+$\sqrt{3}$ | D. | 2$\sqrt{3}$-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (7,6) | B. | (8,7.5) | C. | (9,8.6) | D. | (10,9.2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com