17.設x,y滿足約束條件$\left\{\begin{array}{l}x+y≤1\\ x-y≤1\\ x≥0\end{array}\right.$,則目標函數(shù)z=2x-y的取值范圍為[-1,2].

分析 由約束條件作出可行域,數(shù)形結合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數(shù)得答案

解答 解:可行域對應的區(qū)域如圖當直線y=2x-z經過C時,目標函數(shù)最小,當經過A時最大;其中C(0,1),
由$\left\{\begin{array}{l}{x+y=1}\\{x-y=1}\end{array}\right.$得到A(1,0),
所以目標函數(shù)z=2x-y的最小值為2×0-1=-1,最大值為2×1-0=2;故目標函數(shù)z=2x-y的取值范圍為[-1,2];
故答案為:[-1,2].

點評 本題考查了簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知2cos(B-C)=1+4sinBsinC.
(1)求角A的大。
(2)若a=2$\sqrt{7}$,△ABC的面積2$\sqrt{3}$,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.某培訓機構對沈陽市兩所高中的學生是否愿意參加自主招生培訓的情況進行問卷調查和考試測驗,從兩所學校共隨機抽取100位同學進行調查,統(tǒng)計結果如表:
自招
學校
愿意不愿意
A學校4610
B學校2420
(1)判斷能否在犯錯誤的概率不超過0.01的前提下認為是否愿意參加自主招生培訓與學校有關?
(2)考試測驗中分客觀題和主觀題,客觀題共有8道,每道分值5分,學生李華答對每道客觀題的概率均為0.8.主觀題共有8道,每道分值12分,須隨機抽取5道主觀題作答,其中李華完全會答的有4道,不完全會的有4道,不完全會的每道主觀題得分S的概率滿足:P(S=3k)=$\frac{k}{6}$,k=1,2,3,假設解答各題之間沒有影響.
①對于一道不完全會的主觀題,李華得分的數(shù)學期望是多少?
②求李華在本次測驗中得分ξ的數(shù)學期望.
臨界值參考表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
參考公式:k=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若變量x,y滿足條件$\left\{\begin{array}{l}y≤x\\ x+y≤4\\ y≥k\end{array}\right.$,且z=2x+y的最小值為-6,則k=( 。
A.3B.-3C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若直線2mx-ny-2=0(m>0,n>0)過點(1,-2),則$\frac{1}{m}$+$\frac{9}{n}$的最小值為( 。
A.2B.6C.12D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.過點P(-2,1)引拋物線y2=4x的兩條切線,切點分別為A,B,F(xiàn)是拋物線y2=4x的焦點,則直線PF與直線AB的斜率之和為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),且f(-1)=2,則f(2017)的值是(  )
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=lnx,g(x)=f(x)+x2-3x.
(1)求函數(shù)g(x)的圖象在點(1,g(1))處的切線方程;
(2)設斜率為k的直線與函數(shù)f(x)的圖象交于兩點A(x1,y1),B(x2,y2)(x1<x2),證明:$\frac{1}{x_2}$<k<$\frac{1}{x_1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對應值如表:
x-$\frac{π}{6}$$\frac{π}{3}$$\frac{5π}{6}$$\frac{4π}{3}$$\frac{11π}{6}$$\frac{7π}{3}$$\frac{17π}{6}$
y-1131-113
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)f(x)的一個解析式;
(2)根據(jù)(1)的結果:
( i)當x∈[0,$\frac{π}{3}$]時,方程f(3x)=m恰有兩個不同的解,求實數(shù)m的取值范圍;
( ii)若α,β是銳角三角形的兩個內角,試比較f(sinα)與f(cosβ)的大。

查看答案和解析>>

同步練習冊答案