11.設(shè)長(zhǎng)方體的長(zhǎng)、寬、高分別為2,1,1,其頂點(diǎn)都在同一個(gè)球面上,則該球的體積為$\sqrt{6}$π.

分析 先求長(zhǎng)方體的對(duì)角線的長(zhǎng)度,就是球的直徑,然后求出它的體積.

解答 解:長(zhǎng)方體的體對(duì)角線的長(zhǎng)是:$\sqrt{4+1+1}$=$\sqrt{6}$
球的半徑是:$\frac{\sqrt{6}}{2}$
這個(gè)球的體積:$\frac{4}{3}$π×($\frac{\sqrt{6}}{2}$)3=$\sqrt{6}$π.
故答案為:$\sqrt{6}$π.

點(diǎn)評(píng) 本題考查球的內(nèi)接體,球的體積,考查空間想象能力,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知隨機(jī)變量X~N(3,1),且P(2≤X≤4)=0.6626,則P(X>4)=( 。
A.0.1685B.0.1686C.0.1687D.0.1688

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,-2),B(2,3),C(-2,-1).
(Ⅰ)求$\overrightarrow{AB}$•$\overrightarrow{AC}$;
(Ⅱ)若實(shí)數(shù)t滿足($\overrightarrow{AB}$-t$\overrightarrow{OC}$)•$\overrightarrow{OB}$=0,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.(A)設(shè)函數(shù)f(x)=xcosx-sinx,x∈(0,π),則f(x)的單調(diào)性是(  )
A.增函數(shù)B.減函數(shù)C.先增后減函數(shù)D.先減后增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a=10,b=8,B=30°,那么△ABC的解的情況是( 。
A.無解B.一解C.兩解D.一解或兩解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.用系統(tǒng)抽樣法從160名學(xué)生中抽取容量為20的樣本,將160名學(xué)生從1到160編號(hào),按編號(hào)順序平均分成20段(1~8號(hào),9~16號(hào),…,153~160號(hào)).若第16段應(yīng)抽出的號(hào)碼為125,則第1段中用簡(jiǎn)單隨機(jī)抽樣確定的號(hào)碼是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線x+2ay-1=0與直線(a-2)x-ay+2=0平行,則a的值是( 。
A.$\frac{3}{2}$B.$\frac{3}{2}$或0C.-$\frac{2}{3}$D.-$\frac{2}{3}$或0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)$f(x)={cos^2}\;\frac{x}{2}-{sin^2}\;\frac{x}{2}\;+sin\;x$,若${x_0}\;∈({0\;,\;\frac{π}{4}})$且$f({x_0})=\frac{{4\sqrt{2}}}{5}$,則cos2x0=$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時(shí)間內(nèi)每個(gè)技工加工的合格零件數(shù),按十位數(shù)字為莖,個(gè)位數(shù)字為葉得到的莖葉圖如圖所示.已知甲、乙兩組數(shù)據(jù)的平均數(shù)都為10.
(1)求(a,b)的值;
(2)分別求出甲、乙兩組數(shù)據(jù)的方差S2和S2,并由此分析兩組技工的加工水平
(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機(jī)抽取一名技工,對(duì)其加工的零件進(jìn)行檢測(cè),若兩人加工的合格零件數(shù)之和大于17,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.
(注:方差s2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],$\overline{x}$為數(shù)據(jù)x1,x2,…,xn的平均數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案