A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{7}}{4}$ | D. | $\frac{\sqrt{13}}{4}$ |
分析 由△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,根據(jù)切線長(zhǎng)定理,可得|PQ|=|F1M|-|PF2|,再結(jié)合|F1Q|=4,求得|PF1|+|PF2|=8,即a=4,再由隱含條件求得c,則橢圓的離心率可求.
解答 解:如圖,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q
∴根據(jù)切線長(zhǎng)定理可得|AM|=|AN|,|F1M|=|F1Q|,|PN|=|PQ|
∵|AF1|=|AF2|,
∴|AM|+|F1M|=|AN|+|PN|+|PF2|,
∴|F1M|=|PN|+|PF2|=|PQ|+|PF2|,
∴|PQ|=|F1M|-|PF2|,
則|PF1|+|PF2|=|F1Q|+|PQ|+|PF2|=|F1Q|+|F1M|-|PF2|+|PF2|=2|F1Q|=8,
即2a=8,a=4,
又b2=3,
∴c2=a2-b2=13,則$c=\sqrt{13}$,
∴橢圓的離心率e=$\frac{c}{a}=\frac{\sqrt{13}}{4}$.
故選:D.
點(diǎn)評(píng) 本題考查橢圓的離心率,考查三角形內(nèi)切圓的性質(zhì),考查切線長(zhǎng)定理,考查學(xué)生的計(jì)算能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 37種 | B. | 1848種 | C. | 3種 | D. | 6種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$-2 | B. | 2 | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{2}$+2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com