13.若f(x)=ex,則$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{△x}$=(  )
A.eB.-eC.2eD.-2e

分析 根據(jù)導(dǎo)數(shù)和定義和導(dǎo)數(shù)的法則計算即可.

解答 解:∵f(x)=ex,
∴f′(x)=ex,則
∴$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{△x}$=f′(1)=e,
故選:A.

點評 本題考查了導(dǎo)數(shù)的定義和導(dǎo)數(shù)的運算法則,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為$\frac{3}{5}$和$\frac{2}{3}$,現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設(shè)甲、乙兩組的研發(fā)相互獨立.
(1)求只有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品A研發(fā)成功,預(yù)計企業(yè)可獲利潤50萬元,若新產(chǎn)品B研發(fā)成功,預(yù)計企業(yè)可獲利潤60萬元,求該企業(yè)可獲利潤的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點F1是拋物線C:x2=2py(p>0)的焦點,點F2為拋物線C的對稱軸與其準線的交點,過F2作拋物線C的切線,切點為A,若點A恰好在以F1,F(xiàn)2為焦點的雙曲線上,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{3}$+1D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.過拋物線y2=4x的焦點作直線與其交于M、N兩點,作平行四邊形MONP,則點P的軌跡方程為y2=4(x-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)i是虛數(shù)單位,則|1-i-$\frac{2}{i}}$|等于$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.命題“?x∈R,cosx<$\frac{1}{2}$”的否定是( 。
A.?x<R,cosx≥$\frac{1}{2}$B.?x∈R,cosx>$\frac{1}{2}$C.?x<R,cosx≥$\frac{1}{2}$D.?x∈R,cosx>$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a>0,函數(shù)f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,當x∈[0,$\frac{π}{2}$]時,-5≤f(x)≤1.
(1)求常數(shù)a,b的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)指出所求函數(shù)圖象是由f(x)=sinx的圖象如何變換得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖的程序后,輸出的值是( 。
A.17B.19C.21D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知M={x|($\frac{1}{2}$)x<2},N={x|log2x<1},則M∩N=( 。
A.{x|x>-1}B.{x|-1<x<2}C.{x|0<x<2}D.{x|x<2}

查看答案和解析>>

同步練習(xí)冊答案