設集合A={x|-1≤x<3},B={x|2x-4≥x≥x-2},C={x|2x+a>0}.
(1)求A∩B,A∪B;
(2)若滿足B⊆C,求實數(shù)a的取值范圍.
考點:集合關系中的參數(shù)取值問題,并集及其運算,交集及其運算
專題:計算題,集合
分析:(1)化簡集合B,即可求A∩B,A∪B;
(2)利用B⊆C,可得-
a
2
<2
,即可求實數(shù)a的取值范圍.
解答: 解:(1)∵B={x|x≥2},
∴A∩B={x|2≤x<3},A∪B={x|x≥-1}.
(2)∵C={x|x>-
a
2
}
,
又∵B⊆C,∴-
a
2
<2
,∴a>-4.
點評:本題考查集合的運算,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,已知a2+a7=18,則S8等于(  )
A、75B、72C、81D、63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinx,cosx),
b
=(sin(x-
π
6
),sinx),函數(shù)f(x)=2
a
b
,g(x)=f(
πx
4
).
(1)求f(x)在[
π
2
,π]上的最值,并求出相應的x的值;
(2)計算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,討論g(x)在[t,t+2]上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,半徑為2的半圓內的陰影部分以直徑AB所在直線為軸,旋轉一周得到一幾何體,求該幾何體的體積.(其中∠BAC=30°)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A(1,3),B(2,1),C(5,t),O為坐標原點.
(1)若BC⊥AB,求t值.
(2)若
OB
AC
,求t值及此時△ABC中角B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知式子(x2-
2
x
10
(Ⅰ)求該式的二項展開式中的第4項
(Ⅱ)求該式的二項展開式中含
1
x
的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|-4<x<2},B={x|x<-5或x>1},C={x|m-1<x<m+1},m∈R.
(1)求A∩B;
(2)若A∩B⊆C,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)代人普遍認為拓展訓練是一種挑戰(zhàn)極限、完善人格的訓練.某大學生拓展訓練中心著眼于大學生的實際情況,精心地設計了三個相互獨立的挑戰(zhàn)極限項目,并設置如下計分辦法:
項目
挑戰(zhàn)成功得分103060
挑戰(zhàn)失敗得分000
據(jù)調查,大學生挑戰(zhàn)甲項目的成功概率為
4
5
,挑戰(zhàn)乙項目的成功概率為
3
4
,挑戰(zhàn)丙項目的成功概率為
1
2

(Ⅰ)求某同學三個項目全部挑戰(zhàn)成功的概率;
(Ⅱ)記該同學挑戰(zhàn)三個項目后所得分數(shù)為X,求X的分布列并求EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x+3,g(x)=3x-k(k∈R).
(1)如果f(g(x))=g(f(x))恒成立,求k值,并求函數(shù)h(x)=f(x)+
g(x)
的值域;
(2)若k=-4,實數(shù)a滿足f(a2)=g(a2-a),求a
3
2
-a-
3
2
的值.

查看答案和解析>>

同步練習冊答案