12.(1)6本不同的書平均分成三堆,有多少種不同的分法?
(2)6本不同的書分三份,2份1本,1份4本,有多少種不同的分法?
(3)6本不同的書平均分給三位小朋友,有多少種不同的分法?

分析 (1)平均分成三份,每份2本,這是平均分組問題;
(2)6本不同的書分三份,2份1本,1份4本,其中有均勻分組問題;
(4)先分組,再送給三位小朋友,即可得到結(jié)論.

解答 解:(1)6本不同的書平均分成三堆,有C62C42C22÷A33=15種分堆方法;
(2)6本不同的書分三份,2份1本,1份4本,有C61C51÷A22=15種分法;
(3)6本不同的書平均分給三位小朋友,有C62C42C22=90種分法.

點(diǎn)評 本題考查排列、組合及簡單計數(shù)問題,考查計算能力,理解能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若f:A→B能構(gòu)成映射,把集合A中的元素叫原像,在集合B中與A中的元素相對應(yīng)的元素叫像.下列說法正確的有( 。
(1)A中的任一元素在B中必須有像且唯一;  (2)B中的元素可以在A中無原像;
(3)B中的多個元素可以在A中有相同的原像;(4)像的集合就是集合B.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=(-2,0).點(diǎn)O是坐標(biāo)原點(diǎn).
(1)設(shè)$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,若四邊形OACB是平行四邊形,求點(diǎn)C的坐標(biāo);
(2)若$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=0,求證$\overrightarrow{c}$⊥($\overrightarrow{a}$-$\overrightarrow$);
(3)求<$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{a}$>的值;
(4)若$\overrightarrow{c}$$⊥\overrightarrow$($\overrightarrow{c}$≠$\overrightarrow{0}$),當(dāng)t∈[-$\sqrt{3}$,2]時,求|$\overrightarrow{a}$-t$\frac{\overrightarrow{c}}{|\overrightarrow{c}|}$|的取值范圍;
(5)若|$\overrightarrow{c}$|=|$\overrightarrow{a}$|,求($\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$)•$\overrightarrow{c}$的最大值及<$\overrightarrow{c}$-$\frac{\overrightarrow}{2}$,$\overrightarrow{c}$>的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知sinα+cosα=$\frac{1}{3}$,其中0<α<π,求sinα-cosαθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知一條直線與一個平面內(nèi)的兩條直線垂直.則該直線與這個平面的位置關(guān)系為(  )
A.平行B.相交C.在平面內(nèi)D.都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.正弦定理的內(nèi)容是( 。
A.$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$B.$\frac{a}{cosA}=\frac{cosB}=\frac{c}{cosC}$
C.$\frac{a}{sinA}=\frac{cosB}=\frac{c}{tanC}$D.以上結(jié)果都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)(x2+4x+3)n=a0+a1x+a2x2+…+a2nx2n(n∈N+
(1)求a1+a2+…+a2n;
(2)設(shè)f(n)=a1,g(n)=n(n+1)•2n,試比較f(n)與g(n)的大小,并證明你的結(jié)論..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=x2+ax+b,g(x)=lnx,記F(x)=f(x)-g(x),求F(x)在[1,2]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.等比數(shù)列{an}中,a2•a8=4,求a4•a5•a6的值.

查看答案和解析>>

同步練習(xí)冊答案