17.正弦定理的內(nèi)容是( 。
A.$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}$B.$\frac{a}{cosA}=\frac{cosB}=\frac{c}{cosC}$
C.$\frac{a}{sinA}=\frac{cosB}=\frac{c}{tanC}$D.以上結(jié)果都不正確

分析 由正弦定理的內(nèi)容可得.

解答 解:由題意可知正弦定理的內(nèi)容為$\frac{a}{sinA}$=$\frac{sniB}$=$\frac{c}{sinC}$
故選:A

點評 本題考查正弦定理,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)集合A={5,a+1},B={a,b},若A=B,則a+b=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知長方體的底面是正方形,且邊長為2,體對角線長為2$\sqrt{5}$,則它的表面積為( 。
A.4(3$\sqrt{3}$+4)B.8(2$\sqrt{3}$+1)C.12(2$\sqrt{3}$+1)D.3($\sqrt{3}$+8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果一條直線與一個平面平行,則這條直線與這個平面內(nèi)直線的位置關(guān)系為(  )
A.平行或相交B.平行或異面C.相交或異面D.都有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)6本不同的書平均分成三堆,有多少種不同的分法?
(2)6本不同的書分三份,2份1本,1份4本,有多少種不同的分法?
(3)6本不同的書平均分給三位小朋友,有多少種不同的分法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{x-y≤1}\end{array}\right.$,則z=3x+y的最大值為m,最小值為n.則m+n=(  )
A.14B.10C.12D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知拋物線y2=12x上兩點P(x1,y1)、Q(x2,y2),且x1+x2=8,則|PQ|的最大值為( 。
A.8B.10C.12D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若一個底面是正三角形的三棱柱的正視圖如圖所示,則其體積等于(  )
A.2$\sqrt{3}$B.4$\sqrt{3}$C.8$\sqrt{3}$D.16$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.若x∈[4,+∞),求函數(shù)y=$\frac{{x}^{2}-2x+3}{x+1}$的值域.

查看答案和解析>>

同步練習(xí)冊答案