20.已知sinα+cosα=$\frac{1}{3}$,其中0<α<π,求sinα-cosαθ的值.

分析 將sinα+cosα=$\frac{1}{3}$兩邊平方,利用平方關系化簡求出2sinαcosα的值,根據(jù)三角函數(shù)的符號縮小α的范圍,判斷出sinα-cosα的符號,利用平方關系求出sinα-cosα的值.

解答 解:將sinα+cosα=$\frac{1}{3}$兩邊平方得,
2sinαcosα=$-\frac{8}{9}$<0,
因為0<α<π,所以$\frac{π}{2}$<α<π,
則sinα-cosα>0,
所以sinα-cosα=$\sqrt{(sinα-cosα)^{2}}$=$\sqrt{1-(-\frac{8}{9})}$=$\frac{\sqrt{17}}{3}$.

點評 本題考查同角三角函數(shù)的平方關系,以及三角函數(shù)的符號,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知圓C在x軸上的截距為-1和3,在y軸上的一個截距為1.
(1)求圓C的標準方程;
(2)求過原點且被圓C截得的弦長最短時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.某算法的流程圖如圖所示,記輸出的數(shù)組(x,y)依次為(x1,y1),(x2,y2),…(x3,y3)…,若程序運行中輸出的一個數(shù)組是(9,y),則y=-4;程序結束時,共輸出(x,y)的組數(shù)為1008.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知長方體的底面是正方形,且邊長為2,體對角線長為2$\sqrt{5}$,則它的表面積為( 。
A.4(3$\sqrt{3}$+4)B.8(2$\sqrt{3}$+1)C.12(2$\sqrt{3}$+1)D.3($\sqrt{3}$+8)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和Sn ,點(n,$\frac{{S}_{n}}{n}$)在直線y=2x+1上,數(shù)列{bn}滿足$\frac{_{1}-1}{3}$+$\frac{_{2}-1}{{3}^{2}}$+…+$\frac{_{n}-1}{{3}^{n}}$=an(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn
(3)是否存在常數(shù)p(p≠-1),使數(shù)列{$\frac{{T}_{n}-n}{3({3}^{n}+p)}$}是等比數(shù)列?若存在,求出p的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.如果一條直線與一個平面平行,則這條直線與這個平面內(nèi)直線的位置關系為(  )
A.平行或相交B.平行或異面C.相交或異面D.都有可能

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)6本不同的書平均分成三堆,有多少種不同的分法?
(2)6本不同的書分三份,2份1本,1份4本,有多少種不同的分法?
(3)6本不同的書平均分給三位小朋友,有多少種不同的分法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知拋物線y2=12x上兩點P(x1,y1)、Q(x2,y2),且x1+x2=8,則|PQ|的最大值為( 。
A.8B.10C.12D.14

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=x2-(lga+2)x+lgb,f(1)=-2,且f(x)≥-2x對x∈R恒成立.
(1)求f(x)的解析式.
(2)若g(x)=f(x)+2|x-m+1|的最小值為h(m),求h(m)的表達式.
(3)在(2)的條件下解h(m)<1不等式.

查看答案和解析>>

同步練習冊答案